九年级《用列举法求概率》课堂训练(含答案)
2016年人教版九年级数学上册同步测试:25.2 用列举法求概率
一、选择题(共10小题)
1.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )
A.
B. C. D.
2.一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( )
A. B. C. D.
3.如图是一个可以自由转动的转盘,转盘分为6个大小相同的扇形,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),指针指向阴影区域的概率是( )
A. B. C. D.
4.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a,如果投掷一枚硬币,正面向上的概率为b,关于a、b大小的正确判断是( )
A.a>b B.a=b C.a<b D.不能判断
5.如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )
A. B. C. D.
6.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( )
A. B. C. D.
7.如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是( )
A. B. C. D.
8.如图,小明随机地在对角线为6cm和8cm的菱形区域内投针,则针扎到其内切圆区域的概率是( )
A. B. C. D.
9.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为( )
A. B. C. D.
10.如图,▱ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为( )
A. B. C. D.
二、填空题(共18小题)
11.如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为 .
12.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是 .
13.如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为 .
14.如图,四边形ABCD是菱形,E、F、G、H分别是各边的中点,随机地向菱形ABCD内掷一粒米,则米粒落到阴影区域内的概率是 .
15.如图所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在黑色区域的概率是 .
16.如图所示的3×3方格形地面上,阴影部分是草地,其余部分是空地,一只自由飞翔的小鸟飞下来落在草地上的概率为 .
17.如图,四条直径把两个同心圆分成八等份,若往圆面投掷飞镖,则飞镖落在白色区域的概率是 .
18.一个圆形转盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,飞镖落在转盘上,则落在黄色区域的概率是 .
19.小明“六•一”去公园玩儿投掷飞镖的游戏,投中图中阴影部分有奖(飞镖盘被平均分成8分),小明能获得奖品的概率是 .
20.一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是 .
21.某数学活动小组自制一个飞镖游戏盘,如图,若向游戏盘内投掷飞镖,投掷在阴影区域的概率是 .
22.一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是 .
23.有一个能自由转动的转盘如图,盘面被分成8个大小与性状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是 .
24.如图,小红随意在地板上踢毽子,则毽子恰好落在黑色方砖上的概率为 .
25.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是 .
26.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在 区域的可能性最大(填A或B或C).
27.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是 .
28.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是 .
三、解答题(共2小题)
29.某学校初三年级男生共200名,随机抽取10名测量他们的身高(单位:cm)为:181,176,169,155,163,
175,173,167,165,166.
(1)求这10名男生的平均身高和上面这组数据的中位数;
(2)估计该校初三年级男生身高高于170cm的人数;
(3)从身高为181,176,175,173的男生中任选2名,求身高为181cm的男生被抽中的概率.
30.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).
(1)这次调查中,一共调查了 名学生;
(2)请补全两幅统计图;
(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.
2016年人教版九年级数学上册同步测试:25.2 用列举法求概率
参考答案与试题解析
一、选择题(共10小题)
1.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )
A. B. C. D.
【考点】几何概率;平行四边形的性质.
【分析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.
【解答】解:∵四边形是平行四边形,
∴对角线把平行四边形分成面积相等的四部分,
观察发现:图中阴影部分面积=S四边形,
∴针头扎在阴影区域内的概率为,
故选:B.
【点评】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.
2.一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( )
A. B. C. D.
【考点】几何概率.
【分析】根据几何概率的求法:最终停留在黑色的方砖上的概率就是黑色区域的面积与总面积的比值.
【解答】解:观察这个图可知:黑色区域(3块)的面积占总面积(9块)的,故其概率为.
故选:A.
【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
3.如图是一个可以自由转动的转盘,转盘分为6个大小相同的扇形,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),指针指向阴影区域的概率是( )
A. B. C. D.
【考点】几何概率.
【分析】求出阴影在整个转盘中所占的比例即可解答.
【解答】解:∵每个扇形大小相同,因此阴影面积与空白的面积相等,
∴落在阴影部分的概率为: =.
故选:C.
【点评】此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.
4.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a,如果投掷一枚硬币,正面向上的概率为b,关于a、b大小的正确判断是( )
A.a>b B.a=b C.a<b D.不能判断
【考点】几何概率.
【分析】分别利用概率公式将a和b求得后比较即可得到正确的选项.
【解答】解:∵正六边形被分成相等的6部分,阴影部分占3部分,
∴a==,
∵投掷一枚硬币,正面向上的概率b=,
∴a=b,
故选B.
【点评】本题考查了几何概率的知识,解题的关键是分别利用概率公式求得a、b的值,难度不大.
5.如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )
A. B. C. D.
【考点】几何概率.
【分析】利用指针落在阴影区域内的概率是:,分别求出概率比较即可.
【解答】解:A、如图所示:指针落在阴影区域内的概率为: =;
B、如图所示:指针落在阴影区域内的概率为: =;
C、如图所示:指针落在阴影区域内的概率为:;
D、如图所示:指针落在阴影区域内的概率为:,
∵>>>,
∴指针落在阴影区域内的概率最大的转盘是:.
故选:A.
【点评】此题考查了几何概率,计算阴影区域的面积在总面积中占的比例是解题关键.
6.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( )
A. B. C. D.
【考点】几何概率;平行四边形的性质.
【专题】转化思想.
【分析】先根据平行四边形的性质求出平行四边形对角线所分的四个三角形面积相等,再求出S1=S2即可.
【解答】解:根据平行四边形的性质可得:平行四边形的对角线把平行四边形分成的四个面积相等的三角形,
根据平行线的性质可得S1=S2,
则阴影部分的面积占,
故飞镖落在阴影区域的概率为:;
故选:C.
【点评】此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比,关键是根据平行线的性质求出阴影部分的面积与总面积的比.
7.如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是( )
A. B. C. D.
【考点】几何概率.
【分析】设圆的面积为6,易得到阴影区域的面积为4,然后根据概率的概念计算即可.
【解答】解:设圆的面积为6,
∵圆被分成6个相同扇形,
∴每个扇形的面积为1,
∴阴影区域的面积为4,
∴指针指向阴影区域的概率==.
故选:D.
【点评】本题考查了求几何概率的方法:先利用几何性质求出整个几何图形的面积n,再计算出其中某个区域的几何图形的面积m,然后根据概率的定义计算出落在这个几何区域的事件的概率=.
8.如图,小明随机地在对角线为6cm和8cm的菱形区域内投针,则针扎到其内切圆区域的概率是( )
A. B. C. D.
【考点】几何概率.
【分析】利用菱形的性质得出菱形内切圆的半径和面积,进而得出菱形面积,即可得出针扎到其内切圆区域的概率.
【解答】解:连接两对角线,设圆与菱形切点为E,
∵对角线为6cm和8cm的菱形,
∴AO=CO=3cm,BO=DO=4cm,BD⊥AC,
∴AB=5cm,
由题意可得出:OE⊥AB,
∴×EO×AB=×AO×BO,
∴×5×EO=×3×4,
解得:EO=,
∴内切圆区域的面积为:π×()2=π(cm2),
∵菱形的面积为:×6×8=24(cm2),
∴则针扎到其内切圆区域的概率是: =.
故选:C.
【点评】此题主要考查了菱形的性质以及概率公式的应用,根据题意得出菱形内切圆的面积是解题关键.
9.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为( )
A. B. C. D.
【考点】几何概率.
【分析】根据正方形的性质求出阴影部分占整个面积的,进而得出答案.
【解答】解:由题意可得出:图中阴影部分占整个面积的,
因此一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是:.
故选:B.
【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
10.如图,▱ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为( )
A. B. C. D.
【考点】几何概率;平行四边形的性质.
【专题】计算题.
【分析】根据平行四边形的性质易得S△OEH=S△OFG,则S阴影部分=S△AOB=S平行四边形ABCD,然后根据几何概率的意义求解.
【解答】解:∵四边形ABCD为平行四边形,
∴△OEH和△OFG关于点O中心对称,
∴S△OEH=S△OFG,
∴S阴影部分=S△AOB=S平行四边形ABCD,
∴飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率==.
故选C.
【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.也考查了平行四边形的性质.
二、填空题(共18小题)
11.如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为 .
【考点】几何概率.
【分析】先求出正方形的面积,阴影部分的面积,再根据几何概率的求法即可得出答案.
【解答】解:∵S正方形=(3×2)2=18,
S阴影=4××3×1=6,
∴这个点取在阴影部分的概率为: =,
故答案为:.
【点评】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
12.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是 .
【考点】几何概率.
【分析】根据几何概率的求法:最终停留在黑色的方砖上的概率就是黑色区域的面积与总面积的比值.
【解答】解:观察这个图可知:黑色区域(4块)的面积占总面积(9块)的,
则它最终停留在黑色方砖上的概率是;
故答案为:.
【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
13.如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为 .
【考点】几何概率.
【分析】确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出飞镖落在阴影区域的概率.
【解答】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,飞镖落在阴影区域的概率是;
故答案为:.
【点评】本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.
14.如图,四边形ABCD是菱形,E、F、G、H分别是各边的中点,随机地向菱形ABCD内掷一粒米,则米粒落到阴影区域内的概率是 .
【考点】几何概率;菱形的性质;中点四边形.
【分析】先求出阴影部分的面积与菱形的面积之比,再根据概率公式即可得出答案.
【解答】解:∵四边形ABCD是菱形,E、F、G、H分别是各边的中点,
∴四边形HGFE的面积是菱形ABCD面积的,
∴米粒落到阴影区域内的概率是;
故答案为:.
【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
15.如图所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在黑色区域的概率是 .
【考点】几何概率.
【分析】首先确定阴影的面积在整个轮盘中占的比例,根据这个比例即可求出飞镖落在阴影部分的概率.
【解答】解:∵观察发现:阴影部分面积=圆的面积,
∴镖落在黑色区域的概率是,
故答案为:.
【点评】此题主要考查了几何概率,确定阴影部分的面积与大圆的面积之间的关系是解题的关键.
16.如图所示的3×3方格形地面上,阴影部分是草地,其余部分是空地,一只自由飞翔的小鸟飞下来落在草地上的概率为 .
【考点】几何概率.
【分析】先求出阴影部分的面积,再求出大正方形的面积,最后根据阴影部分的面积与总面积的比,即可得出答案.
【解答】解:∵阴影部分的面积=3个小正方形的面积,
大正方形的面积=9个小正方形的面积,
∴阴影部分的面积占总面积的=,
∴小鸟飞下来落在草地上的概率为;
故答案为:.
【点评】此题主要考查了几何概率的求法,用到的知识点为:概率=相应的面积与总面积之比,关键是求出阴影部分的面积.
17.如图,四条直径把两个同心圆分成八等份,若往圆面投掷飞镖,则飞镖落在白色区域的概率是 .
【考点】几何概率.
【分析】根据两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出白色区域的面积,利用几何概率的计算方法解答即可.
【解答】解:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,
∴P(飞镖落在白色区域)==;
故答案为:.
【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
18.一个圆形转盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,飞镖落在转盘上,则落在黄色区域的概率是 .
【考点】几何概率.
【分析】根据概率公式,求出红色区域的面积与总面积的比即可解答.
【解答】解:∵圆形转盘平均分成红、黄、蓝、白4个扇形区域,其中黄色区域占1份,
∴飞镖落在黄色区域的概率是;
故答案为:.
【点评】本题考查了几何概率的运用,用到的知识点是概率公式,在解答时根据概率=相应的面积与总面积之比是解答此类问题关键.
19.小明“六•一”去公园玩儿投掷飞镖的游戏,投中图中阴影部分有奖(飞镖盘被平均分成8分),小明能获得奖品的概率是 .
【考点】几何概率.
【分析】根据概率的意义解答即可.
【解答】解:∵飞镖盘被平均分成8分,阴影部分占3块,
∴小明能获得奖品的概率是.
故答案为:.
【点评】本题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.
20.一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是 .
【考点】几何概率.
【分析】首先确定在阴影的面积在整个面积中占的比例,根据这个比例即可求出小鸟落在阴影方格地面上的概率.
【解答】解:∵正方形被等分成16份,其中黑色方格占4份,
∴小鸟落在阴影方格地面上的概率为: =.
故答案为:.
【点评】此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.
21.某数学活动小组自制一个飞镖游戏盘,如图,若向游戏盘内投掷飞镖,投掷在阴影区域的概率是 .
【考点】几何概率.
【专题】网格型.
【分析】利用阴影部分面积除以总面积=投掷在阴影区域的概率,进而得出答案.
【解答】解:由题意可得,投掷在阴影区域的概率是: =.
故答案为:.
【点评】此题主要考查了几何概率,求出阴影部分面积与总面积的比值是解题关键.
22.一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是 .
【考点】几何概率.
【专题】常规题型.
【分析】根据矩形的性质求出阴影部分占整个面积的,进而得出答案.
【解答】解:由题意可得出:图中阴影部分占整个面积的,
∴一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是:.
故答案为:.
【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
23.有一个能自由转动的转盘如图,盘面被分成8个大小与性状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是 .
【考点】几何概率.
【分析】求出白色扇形在整个转盘中所占的比例即可解答.
【解答】解:∵每个扇形大小相同,因此阴影面积与空白的面积相等,
∴落在白色扇形部分的概率为: =.
故答案为:.
【点评】此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.
24.如图,小红随意在地板上踢毽子,则毽子恰好落在黑色方砖上的概率为 .
【考点】几何概率.
【专题】常规题型.
【分析】先求出黑色方砖在整个地板面积中所占面积的比值,根据此比值即可解答.
【解答】解:∵黑色方砖的面积为5,所有方砖的面积为20,
∴键子恰落在黑色方砖上的概率为P(A)==.
故答案为:.
【点评】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比,关键是求出黑色方砖在整个地板面积中所占面积的比值.
25.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是 .
【考点】几何概率;勾股定理.
【分析】首先确定小正方形的面积在大正方形中占的比例,根据这个比例即可求出针扎到小正方形(阴影)区域的概率.
【解答】解:直角三角形的两条直角边的长分别是2和1,则小正方形的边长为1,根据勾股定理得大正方形的边长为, =,针扎到小正方形(阴影)区域的概率是.
【点评】本题将概率的求解设置于“赵爽弦图”的游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.易错点是得到两个正方形的边长.
26.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在 A 区域的可能性最大(填A或B或C).
【考点】几何概率.
【分析】根据哪个区域的面积大落在那个区域的可能性就大解答即可.
【解答】解:由题意得:SA>SB>SC,
故落在A区域的可能性大,
故答案为:A.
【点评】本题考查了几何概率,解题的关键是了解那个区域的面积大落在那个区域的可能性就大.
27.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是 .
【考点】几何概率.
【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.
【解答】解:∵由图可知,黑色方砖2块,共有9块方砖,
∴黑色方砖在整个地板中所占的比值=,
∴它停在黑色区域的概率是.
故答案为:.
【点评】本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.
28.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是 .
【考点】几何概率.
【专题】压轴题.
【分析】先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再求出S1=S2即可.
【解答】解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,
根据平行线的性质易证S1=S2,故阴影部分的面积占一份,
故针头扎在阴影区域的概率为.
【点评】此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.
三、解答题(共2小题)
29.某学校初三年级男生共200名,随机抽取10名测量他们的身高(单位:cm)为:181,176,169,155,163,
175,173,167,165,166.
(1)求这10名男生的平均身高和上面这组数据的中位数;
(2)估计该校初三年级男生身高高于170cm的人数;
(3)从身高为181,176,175,173的男生中任选2名,求身高为181cm的男生被抽中的概率.
【考点】列表法与树状图法;用样本估计总体;算术平均数;中位数.
【分析】(1)利用平均数及中位数的定义分别计算后即可确定正确的结论;
(2)用样本平均数估计总体平均数即可;
(3)列表将所有等可能的结果列举出来,利用概率公式求解即可.
【解答】解:(1)平均身高为: =169cm;
∵排序后位于中间的两数167和169,
∴中位数为168cm;
(2)∵10人中身高高于170的有4人,
∴200名初三学生中共有200×=80人;
(3)身高分别为181,176,175,173的四名男生分别用1,2,3,4表示,
列表得:
| 1 | 2 | 3 | 4 |
1 |
| 12 | 13 | 14 |
2 | 21 |
| 23 | 24 |
3 | 31 | 32 |
| 34 |
4 | 41 | 42 | 43 |
|
∵共有12种等可能的结果,有1的有6种,
∴身高为181cm的男生被抽中的概率=.
【点评】本题考查了中位数、平均数及列表与树状图的知识,解题的关键是能够利用列表将所有等可能的结果列举出来,难度不大.
30.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).
(1)这次调查中,一共调查了 200 名学生;
(2)请补全两幅统计图;
(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.
【考点】列表法与树状图法;扇形统计图;条形统计图.
【分析】(1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);
(2)根据题意可求得B占的百分比为:1﹣20%﹣30%﹣15%=35%,C的人数为:200×30%=60(名);则可补全统计图;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.
【解答】解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);
故答案为:200;
(2)B占的百分比为:1﹣20%﹣30%﹣15%=35%,
C的人数为:200×30%=60(名);
如图:
(3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;
画树状图得:
∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,
∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为: =.
【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
《25.2 用列举法求概率》(3)
一、选择题
1.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为( )
A. B. C. D.
2.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是( )
A. B. C. D.
3.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为( )
A. B. C. D.
4.小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:
抛出两个正面﹣﹣小明赢1分;抛出其他结果﹣﹣小刚赢1分;
谁先到10分,谁就获胜.
这是个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是( )
A.把“抛出两个正面”改为“抛出两个同面”
B.把“抛出其他结果”改为“抛出两个反面”
C.把“小明赢1分”改为“小明赢3分”
D.把“小刚赢1分”改为“小刚赢3分”
5.“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )
A. B. C. D.
6.如图,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时发光的概率为( )
A. B. C. D.
7.一枚质地均匀的正方体骰子,六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,其朝上面上的两个数字之和为6的概率是( )
A. B. C. D.
8.有四张形状、大小和质地完全相同的卡片,每张卡片的正面写有一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.则抽取的两张卡片上的算式都正确的概率是( )
A. B. C. D.
二、填空题
9.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是______.
10.如右图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为______.
11.如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是______.
12.把同一副扑克中的红桃2,3,4,5有数字的一面朝下放置,洗匀后甲先抽取一张,记下数字后将牌放回,洗匀后乙再抽取一张.设先后两次抽得的数字分别记为x和y,则|x﹣y|≥2的概率为______.
13.现有点数为:2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为______.
14.有背面完全相同,正面上分别标有两个连续自然数k,k+1(其中k=0,1,2,…,19)的卡片20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为9+1+0=10)不小于14的概率为______.
15.假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受伤,只能爬,不能飞,而且只能永远向右方(包括右上、右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去,则从最初位置爬到4号蜂房中,不同的爬法有______种.
16.从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数,作为函数y=(5﹣m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为______.
17.小静和哥哥两人都很想去观看某场体育比赛,可门票只有一张.哥哥想了一个办法,拿了8张扑克牌,将数字为2、3、5、9的四张牌给小静,将数字为4、6、7、8的四张牌留给自己,并按如下游戏规则进行:小静和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小静去;如果和为奇数,则哥哥去.哥哥设计的游戏规则______(填“公平”或“不公平”).
《25.2 用列举法求概率》(3)
答案
一、选择题
1.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为( )
A. B. C. D.
【解答】解:分别用A、B、C、D表示等腰三角形、平行四边形、菱形、圆,
画树状图得:
∵共有12种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有6种情况,
∴抽到卡片上印有的图案都是轴对称图形的概率为: =.
故选D.
2.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是( )
A. B. C. D.
【解答】解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:
∵一共有12种情况,两个粽子都没有蛋黄的有6种情况,
∴则这两个粽子都没有蛋黄的概率是=
故选B.
3.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为( )
A. B. C. D.
【解答】解:根据题意,画出树状图如下:
一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,
所以,P==.
故选B.
4.小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:
抛出两个正面﹣﹣小明赢1分;抛出其他结果﹣﹣小刚赢1分;
谁先到10分,谁就获胜.
这是个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是( )
A.把“抛出两个正面”改为“抛出两个同面”
B.把“抛出其他结果”改为“抛出两个反面”
C.把“小明赢1分”改为“小明赢3分”
D.把“小刚赢1分”改为“小刚赢3分”
【解答】解:
因为p(正,正)=,则出现其他结果的概率为:,
A.根据出现抛出两个相同面的概率为:,则把“抛出两个正面”改为“抛出两个同面”正确,故此选项正确不符合题意;
B.把“抛出其他结果”改为“抛出两个反面”时,两人获胜概率都为:,故此时公平,故此选项正确不符合题意;
C.∵小明获胜概率为:,小刚获胜概率为:,故把“小明赢1分”改为“小明赢3分”,故此时公平,故此选项正确不符合题意;
D.把“小刚赢1分”改为“小刚赢3分,此时不公平,故此选项错误符合题意;
故选:D.
5.“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )
A. B. C. D.
【解答】解:根据题意画出树状图如下:
一共有20种情况,恰好是一男一女的有12种情况,
所以,P(恰好是一男一女)==.
故选:D.
6.如图,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时发光的概率为( )
A. B. C. D.
【解答】解:画树状图得:
∵共有6种等可能的结果,能让两盏灯泡同时发光的是闭合开关K1、K3与K3、K1,
∴能让两盏灯泡同时发光的概率为: =.
故选B.
7.一枚质地均匀的正方体骰子,六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,其朝上面上的两个数字之和为6的概率是( )
A. B. C. D.
【解答】解:列表得:
| 1 | 2 | 3 | 4 | 5 | 6 |
1 | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) |
2 | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6) |
3 | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6) |
4 | (4,1) | (4,2) | (4,3) | (4,4) | (4,5) | (4,6) |
5 | (5,1) | (5,2) | (5,3) | (5,4) | (5,5) | (5,6) |
6 | (6,1) | (6,2) | (6,3) | (6,4) | (6,5) | (6,6) |
∵共有36种等可能的结果,向上的两个面上的数字之和为6的有5种情况,
∴掷两次骰子,其朝上面上的两个数字之和为6的概率是:.
故选D.
8.有四张形状、大小和质地完全相同的卡片,每张卡片的正面写有一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.则抽取的两张卡片上的算式都正确的概率是( )
A. B. C. D.
【解答】解:设这四个卡片分别为:A,B,C,D,
画树状图得:
∴一共有12种情况,
∵A、﹣5﹣2=﹣7,本项错误;
B、+=2,此项正确;
C、a5﹣a2≠a3,本项错误;
D、a6•a2=a8,此项正确,
∴抽取的两张卡片上的算式都正确的有BD,DB共2个,
∴抽取的两张卡片上的算式都正确的概率是=.
故选D.
二、填空题
9.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是 .
【解答】解:列表如下:
| 2 | 3 | 4 |
2 | (2,2) | (3,2) | (4,2) |
3 | (2,3) | (3,3) | (4,3) |
4 | (2,4) | (3,4) | (4,4) |
所有等可能的结果有9种,其中之和为5的情况有2种,
则P之和为5=.
故答案为:
10.如右图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为 .
【解答】解:画树状图得:
∵共有9种等可能的结果,两辆汽车经过该路口都向右转的有1种情况,
∴两辆汽车经过该路口都向右转的概率为:.
故答案为:.
11.如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是 .
【解答】解:列表得:
(4,6) | (5,6) | (6,6) | (7,6) | (8,6) | (9,6) |
(4,5) | (5,5) | (6.5) | (7,5) | (8,5) | (9,5) |
(4,4) | (5,4) | (6,4) | (7,4) | (8,4) | (9,4) |
(4,3) | (5,3) | (6,3) | (7,3) | (8,3) | (9,3) |
(4,2) | (5,2) | (6,2) | (7,2) | (8,2) | (9,2) |
(4,1) | (5,1) | (6,1) | (7,1) | (8,1) | (9,1) |
∴一共有36种情况,与桌面相接触的边上的数字都是奇数的有9种情况,
∴与桌面相接触的边上的数字都是奇数的概率是,
所以答案:.
12.把同一副扑克中的红桃2,3,4,5有数字的一面朝下放置,洗匀后甲先抽取一张,记下数字后将牌放回,洗匀后乙再抽取一张.设先后两次抽得的数字分别记为x和y,则|x﹣y|≥2的概率为 .
【解答】解:画树状图得:
∵共有16种等可能的结果,|x﹣y|≥2的有6种情况,
∴|x﹣y|≥2的概率为: =.
故答案为:.
13.现有点数为:2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为 .
【解答】解:根据题意,作树状图可得:
分析可得,共12种情况,有4种情况符合条件;
故其概率为.
14.有背面完全相同,正面上分别标有两个连续自然数k,k+1(其中k=0,1,2,…,19)的卡片20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为9+1+0=10)不小于14的概率为 .
【解答】解:根据题意,列表可得:
0 1 | 1 2 | 2 3 | 3 4 | 4 5 |
5 6 | 6 7 | 7 8 | 8 9 | 9 10 |
10 11 | 11 12 | 12 13 | 13 14 | 14 15 |
15 16 | 16 17 | 17 18 | 18 19 | 19 20 |
分析可得,在20种情况中有5种符合条件,故其概率为=;
故答案为:.
15.假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受伤,只能爬,不能飞,而且只能永远向右方(包括右上、右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去,则从最初位置爬到4号蜂房中,不同的爬法有 8 种.
【解答】解:蜜蜂的爬法可能为:1﹣2﹣4;1﹣3﹣4;0﹣3﹣4,1﹣0﹣3﹣4,0﹣3﹣4,0﹣1﹣3﹣4,0﹣1﹣2﹣4,0﹣1﹣3﹣2﹣4共8种.
故答案为:8
16.从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数,作为函数y=(5﹣m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为 .
【解答】解:∵所得函数的图象经过第一、三象限,
∴5﹣m2>0,
∴m2<5,
∴3,0,﹣1,﹣2,﹣3中,3和﹣3均不符合题意,
将m=0代入(m+1)x2+mx+1=0中得,x2+1=0,△=﹣4<0,无实数根;
将m=﹣1代入(m+1)x2+mx+1=0中得,﹣x+1=0,x=1,有实数根;
将m=﹣2代入(m+1)x2+mx+1=0中得,x2+2x﹣1=0,△=4+4=8>0,有实数根.
故方程有实数根的概率为.
故答案为.
17.小静和哥哥两人都很想去观看某场体育比赛,可门票只有一张.哥哥想了一个办法,拿了8张扑克牌,将数字为2、3、5、9的四张牌给小静,将数字为4、6、7、8的四张牌留给自己,并按如下游戏规则进行:小静和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小静去;如果和为奇数,则哥哥去.哥哥设计的游戏规则 不公平 (填“公平”或“不公平”).
【解答】解:(1)法1,列表
哥哥 小墩 | 2 | 3 | 5 | 9 |
4 | 6 | 7 | 9 | 13 |
6 | 8 | 9 | 11 | 15 |
7 | 9 | 10 | 12 | 16 |
8 | 10 | 11 | 13 | 17 |
法2,画树状图
从上表可以看出共有16种可能的值,而其中偶数有6种,奇数有10种,
所以P(小静去看比赛)=,P(哥哥去看比赛)=;所以不公平.
故答案为:不公平.
精品成套资料
- 课件
- 教案
- 试卷
- 学案
- 其他