所属成套资源:2022年高考北师大版数学一轮复习全套试卷资料
北师大版高考数学一轮复习第四章 §4.1 任意角和弧度制、三角函数的概念试卷
展开
这是一份北师大版高考数学一轮复习第四章 §4.1 任意角和弧度制、三角函数的概念试卷,共14页。试卷主要包含了了解任意角的概念和弧度制,任意角的三角函数,038 B.0等内容,欢迎下载使用。
考试要求 1.了解任意角的概念和弧度制.2.能进行弧度与角度的互化,体会引入弧度制的必要性.3.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.
1.角的概念的推广
(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
(2)分类eq \b\lc\{\rc\ (\a\vs4\al\c1(按旋转方向不同分为正角、负角、零角.,按终边位置不同分为象限角和轴线角.))
(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.
2.弧度制的定义和公式
(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.
(2)公式
3.任意角的三角函数
(1)定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sin α=y,cs α=x,tan α=eq \f(y,x)(x≠0).
(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的正弦线,余弦线和正切线.
微思考
1.总结一下三角函数值在各象限符号为正的规律.
提示 一全正、二正弦、三正切、四余弦.
2.三角函数坐标法定义中,若取点P(x,y)是角α终边上异于顶点的任一点,怎样定义角α的三角函数?
提示 设点P到原点O的距离为r,则sin α=eq \f(y,r),cs α=eq \f(x,r),tan α=eq \f(y,x)(x≠0).
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)锐角是第一象限的角,第一象限的角也都是锐角.( × )
(2)角α=kπ+eq \f(π,3)(k∈Z)是第一象限角.( × )
(3)若sin α=sin eq \f(π,7),则α=eq \f(π,7).( × )
(4)-300°角与60°角的终边相同.( √ )
题组二 教材改编
2.终边落在第一象限角平分线上的角的集合是 .(用角度表示)
答案 {α|α=k·360°+45°,k∈Z}
3.一条弦的长等于半径,这条弦所对的圆心角大小为 弧度.
答案 eq \f(π,3)
4.若角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(-1,2),则sin α-cs α+tan α= .
答案 eq \f(3\r(5)-10,5)
题组三 易错自纠
5.若sin α<0,且tan α>0,则α是( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
答案 C
解析 由sin α<0知α的终边在第三、第四象限或y轴的负半轴上;由tan α>0知α的终边在第一或第三象限,故α是第三象限角.
6.已知角θ的顶点与原点重合,始边与x轴非负半轴重合,若A(-1,y)是角θ终边上的一点,且sin θ=-eq \f(3\r(10),10),则y= .
答案 -3
解析 因为sin θ=-eq \f(3\r(10),10)
相关试卷
这是一份2024年数学高考大一轮复习第四章 §4.1 任意角和弧度制、三角函数的概念,共4页。试卷主要包含了如图所示的时钟显示的时刻为4等内容,欢迎下载使用。
这是一份2024年数学高考大一轮复习第四章 §4.1 任意角和弧度制、三角函数的概念,共6页。试卷主要包含了了解任意角的概念和弧度制,任意角的三角函数等内容,欢迎下载使用。
这是一份2024年数学高考大一轮复习第四章 §4.1 任意角和弧度制、三角函数的概念(附答单独案解析),共4页。