所属成套资源:2022年高考北师大版数学一轮复习全套试卷资料
北师大版高考数学一轮复习第八章 §8.5 空间向量及其应用试卷
展开
这是一份北师大版高考数学一轮复习第八章 §8.5 空间向量及其应用试卷,共21页。试卷主要包含了空间向量中的有关定理,空间位置关系的向量表示等内容,欢迎下载使用。
1.空间向量的有关概念
2.空间向量中的有关定理
(1)共线向量定理
空间两个向量a与b(b≠0)共线的充要条件是存在唯一的实数λ,使得a=λb.
(2)共面向量定理
共面向量定理的向量表达式:p=xa+yb,其中x,y∈R,a,b为不共线向量.
(3)空间向量基本定理
如果向量e1,e2,e3是空间三个不共面的向量,a是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3,使得a=λ1e1+λ2e2+λ3e3,空间中不共面的三个向量e1,e2,e3叫作这个空间的一个基底.
3.空间向量的数量积及运算律
(1)数量积及相关概念
①两向量的夹角
已知两个非零向量a,b,在空间任取一点O,作eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,则∠AOB叫做向量a,b的夹角,记作〈a,b〉,其范围是0≤〈a,b〉≤π,若〈a,b〉=eq \f(π,2),则称a与b互相垂直,记作a⊥b.
②两向量的数量积
已知空间两个非零向量a,b,则|a||b|cs〈a,b〉叫做向量a,b的数量积,记作a·b,即a·b=|a||b|cs〈a,b〉.
(2)空间向量数量积的运算律
①(λa)·b=λ(a·b).
②交换律:a·b=b·a.
③分配律:a·(b+c)=a·b+a·c.
4.空间向量的坐标表示及其应用
设a=(a1,a2,a3),b=(b1,b2,b3).
5.空间位置关系的向量表示
(1)直线的方向向量
直线的方向向量是指和这条直线平行(或在这条直线上)的有向线段所表示的向量,一条直线的方向向量有无数个.
(2)平面的法向量
直线l⊥平面α,取直线l的方向向量,则这个向量叫做平面α的法向量.显然一个平面的法向量有无数个,它们是共线向量.
(3)
微思考
1.基向量和基底一样吗?0是否能作为基向量?
提示 不一样.基底是指一个向量组,基向量是基底中的某一个向量;因为0与其他两个非零向量共面,所以0不能作为基向量.
2.用向量法证明空间的线、面垂直关系的关键是什么?
提示 需要确定直线的方向向量和平面的法向量,然后把证明线、面的垂直关系转化为向量间的关系.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)对于非零向量b,若a·b=b·c,则a=c.( × )
(2)在空间直角坐标系中,在Oyz平面上的点的坐标一定是(0,b,c).( √ )
(3)若两条直线平行,则它们的方向向量的方向相同或相反.( √ )
(4)任何三个不共线的向量都可构成空间向量的一个基底.( × )
题组二 教材改编
2.若a,b,c为空间向量的一组基底,则下列各项中,能构成空间向量的基底的一组向量是( )
A.a,a+b,a-b B.b,a+b,a-b
C.c,a+b,a-b D.a+b,a-b,a+2b
答案 C
解析 对于A,因为(a+b)+(a-b)=2a,所以a,a+b,a-b共面,不能构成基底,排除A;对于B,因为(a+b)-(a-b)=2b,所以b,a+b,a-b共面,不能构成基底,排除B;对于D,a+2b=eq \f(3,2)(a+b)-eq \f(1,2)(a-b),所以a+b,a-b,a+2b共面,不能构成基底,排除D;对于C,若c,a+b,a-b共面,则c=λ(a+b)+μ(a-b)=(λ+μ)a+(λ-μ)b,则a,b,c共面,与a,b,c为空间向量的一组基底相矛盾,故c,a+b,a-b可以构成空间向量的一组基底.
3.如图,在四面体OABC中,eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,eq \(OC,\s\up6(→))=c,点M在OA上,且OM=2MA,N为BC的中点,则eq \(MN,\s\up6(→))=________.
答案 -eq \f(2,3)a+eq \f(1,2)b+eq \f(1,2)c
解析 如图,连接ON,
eq \(MN,\s\up6(→))=eq \(ON,\s\up6(→))-eq \(OM,\s\up6(→))=eq \f(1,2)(eq \(OB,\s\up6(→))+eq \(OC,\s\up6(→)))-eq \f(2,3)eq \(OA,\s\up6(→))=eq \f(1,2)(b+c)-eq \f(2,3)a=-eq \f(2,3)a+eq \f(1,2)b+eq \f(1,2)c.
4.设直线l1,l2的方向向量分别为a=(-2,2,1),b=(3,-2,m),若l1⊥l2,则m=________.
答案 10
解析 ∵l1⊥l2,∴a⊥b,∴a·b=-6-4+m=0,
∴m=10.
题组三 易错自纠
5.向量m是直线l的方向向量,向量n是平面α的法向量,“m⊥n”是“l∥α”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分又不必要条件
答案 B
解析 由l∥α,得m⊥n,所以m⊥n是l∥α的必要条件;而由m⊥n不一定有l∥α,也可能lα,故m⊥n不是l∥α的充分条件.
6.已知A,B,C三点不共线,点O为平面ABC外任意一点,若点M满足eq \(OM,\s\up6(→))=eq \f(1,5)eq \(OA,\s\up6(→))+eq \f(4,5)eq \(OB,\s\up6(→))+eq \f(2,5)eq \(BC,\s\up6(→)),则点M________(填“属于”或“不属于”)平面ABC.
答案 属于
解析 ∵eq \(OM,\s\up6(→))=eq \f(1,5)eq \(OA,\s\up6(→))+eq \f(4,5)eq \(OB,\s\up6(→))+eq \f(2,5)eq \(BC,\s\up6(→))=eq \f(1,5)eq \(OA,\s\up6(→))+eq \f(4,5)eq \(OB,\s\up6(→))+eq \f(2,5)(eq \(OC,\s\up6(→))-eq \(OB,\s\up6(→)))=eq \f(1,5)eq \(OA,\s\up6(→))+eq \f(2,5)eq \(OB,\s\up6(→))+eq \f(2,5)eq \(OC,\s\up6(→)),
∵eq \f(1,5)+eq \f(2,5)+eq \f(2,5)=1,
∴M,A,B,C四点共面.
即点M∈平面ABC.
题型一 空间向量的线性运算
1.在三棱锥O-ABC中,M,N分别是OA,BC的中点,G是△ABC的重心,用基向量eq \(OA,\s\up6(→)),eq \(OB,\s\up6(→)),eq \(OC,\s\up6(→))表示eq \(OG,\s\up6(→)),则下列表示正确的是( )
A.eq \f(1,4)eq \(OA,\s\up6(→))+eq \f(1,2)eq \(OB,\s\up6(→))+eq \f(1,3)eq \(OC,\s\up6(→))
B.eq \f(1,2)eq \(OA,\s\up6(→))+eq \f(1,2)eq \(OB,\s\up6(→))+eq \f(1,2)eq \(OC,\s\up6(→))
C.-eq \f(1,6)eq \(OA,\s\up6(→))+eq \f(1,3)eq \(OB,\s\up6(→))+eq \f(1,3)eq \(OC,\s\up6(→))
D.eq \f(1,3)eq \(OA,\s\up6(→))+eq \f(1,3)eq \(OB,\s\up6(→))+eq \f(1,3)eq \(OC,\s\up6(→))
答案 D
解析 eq \(MG,\s\up6(→))=eq \(MA,\s\up6(→))+eq \(AG,\s\up6(→))=eq \f(1,2)eq \(OA,\s\up6(→))+eq \f(2,3)eq \(AN,\s\up6(→))=eq \f(1,2)eq \(OA,\s\up6(→))+eq \f(2,3)(eq \(ON,\s\up6(→))-eq \(OA,\s\up6(→)))
=eq \f(1,2)eq \(OA,\s\up6(→))+eq \f(2,3)eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,2)\(OB,\s\up6(→))+\(OC,\s\up6(→))-\(OA,\s\up6(→))))
=-eq \f(1,6)eq \(OA,\s\up6(→))+eq \f(1,3)eq \(OB,\s\up6(→))+eq \f(1,3)eq \(OC,\s\up6(→)).
eq \(OG,\s\up6(→))=eq \(OM,\s\up6(→))+eq \(MG,\s\up6(→))=eq \f(1,2)eq \(OA,\s\up6(→))-eq \f(1,6)eq \(OA,\s\up6(→))+eq \f(1,3)eq \(OB,\s\up6(→))+eq \f(1,3)eq \(OC,\s\up6(→))=eq \f(1,3)eq \(OA,\s\up6(→))+eq \f(1,3)eq \(OB,\s\up6(→))+eq \f(1,3)eq \(OC,\s\up6(→)).
2.在正方体ABCD-A1B1C1D1中,点P是C1D1的中点,且eq \(AP,\s\up6(→))=eq \(AD,\s\up6(→))+xeq \(AB,\s\up6(→))+yeq \(AA1,\s\up6(→)),则实数x+y的值为( )
A.-eq \f(3,2) B.-eq \f(1,2)
C.eq \f(1,2) D.eq \f(3,2)
答案 D
解析 eq \(AP,\s\up6(→))=eq \(AD,\s\up6(→))+eq \(DD1,\s\up6(—→))+eq \(D1P,\s\up6(—→))=eq \(AD,\s\up6(→))+eq \(AA1,\s\up6(—→))+eq \f(1,2)eq \(AB,\s\up6(→))=eq \(AD,\s\up6(→))+xeq \(AB,\s\up6(→))+yeq \(AA1,\s\up6(—→)),故x=eq \f(1,2),y=1,所以x+y=eq \f(3,2).
3.在正方体ABCD-A1B1C1D1中,点M,N分别是面对角线A1B与B1D1的中点,若eq \(DA,\s\up6(→))=a,eq \(DC,\s\up6(→))=b,eq \(DD1,\s\up6(—→))=c,则eq \(MN,\s\up6(→))等于( )
A.eq \f(1,2)(c+b-a) B.eq \f(1,2)(a+b-c)
C.eq \f(1,2)(a-c) D.eq \f(1,2)(c-a)
答案 D
解析 eq \(MN,\s\up6(→))=eq \(MA1,\s\up6(—→))+eq \(A1N,\s\up6(—→))=eq \f(1,2)eq \(BA1,\s\up6(—→))+eq \f(1,2)eq \(A1C1,\s\up6(——→))=eq \f(1,2)(eq \(BA,\s\up6(→))+eq \(AA1,\s\up6(—→)))+eq \f(1,2)(eq \(A1B1,\s\up6(——→))+eq \(B1C1,\s\up6(——→)))=eq \f(1,2)(-b+c)+eq \f(1,2)(b-a)=eq \f(1,2)(c-a).
4.在平行六面体ABCD-A′B′C′D′中,若eq \(AC′,\s\up6(——→))=xeq \(AB,\s\up6(→))+yeq \(BC,\s\up6(→))+2zeq \(CC′,\s\up6(——→)),则x+y+z等于( )
A.eq \f(5,2) B.2
C.eq \f(3,2) D.eq \f(11,6)
答案 A
解析 由空间向量的线性运算,得eq \(AC′,\s\up6(——→))=eq \(AC,\s\up6(→))+eq \(CC′,\s\up6(——→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\(AB,\s\up6(→))+\(BC,\s\up6(→))))+eq \(CC′,\s\up6(——→)),
由题意知,eq \(AC′,\s\up6(——→))=xeq \(AB,\s\up6(→))+yeq \(BC,\s\up6(→))+2zeq \(CC′,\s\up6(——→)),
则x=1,y=1,2z=1,z=eq \f(1,2),
所以x+y+z=1+1+eq \f(1,2)=eq \f(5,2).
思维升华 用基向量表示指定向量的方法
(1)结合已知向量和所求向量观察图形.
(2)将已知向量和所求向量转化到三角形或平行四边形中.
(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.
题型二 共线向量定理、共面向量定理
的应用
例1 已知A,B,C三点不共线,对平面ABC外的任一点O,若点M满足eq \(OM,\s\up6(→))=eq \f(1,3)(eq \(OA,\s\up6(→))+eq \(OB,\s\up6(→))+eq \(OC,\s\up6(→))).
(1)判断eq \(MA,\s\up6(→)),eq \(MB,\s\up6(→)),eq \(MC,\s\up6(→))三个向量是否共面;
(2)判断点M是否在平面ABC内.
解 (1)由题知eq \(OA,\s\up6(→))+eq \(OB,\s\up6(→))+eq \(OC,\s\up6(→))=3eq \(OM,\s\up6(→)),
所以eq \(OA,\s\up6(→))-eq \(OM,\s\up6(→))=(eq \(OM,\s\up6(→))-eq \(OB,\s\up6(→)))+(eq \(OM,\s\up6(→))-eq \(OC,\s\up6(→))),
即eq \(MA,\s\up6(→))=eq \(BM,\s\up6(→))+eq \(CM,\s\up6(→))=-eq \(MB,\s\up6(→))-eq \(MC,\s\up6(→)),
所以eq \(MA,\s\up6(→)),eq \(MB,\s\up6(→)),eq \(MC,\s\up6(→))共面.
(2)由(1)知,eq \(MA,\s\up6(→)),eq \(MB,\s\up6(→)),eq \(MC,\s\up6(→))共面且基线过同一点M,
所以M,A,B,C四点共面,从而点M在平面ABC内.
思维升华 证明空间四点P,M,A,B共面的方法
(1)eq \(MP,\s\up6(→))=xeq \(MA,\s\up6(→))+yeq \(MB,\s\up6(→));
(2)对空间任一点O,eq \(OP,\s\up6(→))=eq \(OM,\s\up6(→))+xeq \(MA,\s\up6(→))+yeq \(MB,\s\up6(→));
(3)对空间任一点O,eq \(OP,\s\up6(→))=xeq \(OM,\s\up6(→))+yeq \(OA,\s\up6(→))+zeq \(OB,\s\up6(→))(x+y+z=1);
(4)eq \(PM,\s\up6(→))∥eq \(AB,\s\up6(→))(或eq \(PA,\s\up6(→))∥eq \(MB,\s\up6(→))或eq \(PB,\s\up6(→))∥eq \(AM,\s\up6(→))).
跟踪训练1 如图所示,已知斜三棱柱ABC-A1B1C1,点M,N分别在AC1和BC上,且满足eq \(AM,\s\up6(→))=keq \(AC1,\s\up6(→)),eq \(BN,\s\up6(→))=keq \(BC,\s\up6(→))(0≤k≤1).判断向量eq \(MN,\s\up6(→))是否与向量eq \(AB,\s\up6(→)),eq \(AA1,\s\up6(→))共面.
解 因为eq \(AM,\s\up6(→))=keq \(AC1,\s\up6(—→)),eq \(BN,\s\up6(→))=keq \(BC,\s\up6(→)),
所以eq \(MN,\s\up6(→))=eq \(MA,\s\up6(→))+eq \(AB,\s\up6(→))+eq \(BN,\s\up6(→))=keq \(C1A,\s\up6(—→))+eq \(AB,\s\up6(→))+keq \(BC,\s\up6(→))
=k(eq \(C1A,\s\up6(—→))+eq \(BC,\s\up6(→)))+eq \(AB,\s\up6(→))=k(eq \(C1A,\s\up6(—→))+eq \(B1C1,\s\up6(——→)))+eq \(AB,\s\up6(→))
=keq \(B1A,\s\up6(—→))+eq \(AB,\s\up6(→))
=eq \(AB,\s\up6(→))-keq \(AB1,\s\up6(—→))=eq \(AB,\s\up6(→))-k(eq \(AA1,\s\up6(—→))+eq \(AB,\s\up6(→)))
=(1-k)eq \(AB,\s\up6(→))-keq \(AA1,\s\up6(—→)),
所以由共面向量定理知向量eq \(MN,\s\up6(→))与向量eq \(AB,\s\up6(→)),eq \(AA1,\s\up6(—→))共面.
题型三 空间向量数量积及其应用
例2 如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:
(1)eq \(EF,\s\up6(→))·eq \(BA,\s\up6(→));
(2)eq \(EG,\s\up6(→))·eq \(BD,\s\up6(→)).
解 设eq \(AB,\s\up6(→))=a,eq \(AC,\s\up6(→))=b,eq \(AD,\s\up6(→))=c.
则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,
(1)eq \(EF,\s\up6(→))=eq \f(1,2)eq \(BD,\s\up6(→))=eq \f(1,2)c-eq \f(1,2)a,eq \(BA,\s\up6(→))=-a,
eq \(EF,\s\up6(→))·eq \(BA,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)c-\f(1,2)a))·(-a)=eq \f(1,2)a2-eq \f(1,2)a·c=eq \f(1,4).
(2)eq \(EG,\s\up6(→))·eq \(BD,\s\up6(→))=(eq \(EA,\s\up6(→))+eq \(AD,\s\up6(→))+eq \(DG,\s\up6(→)))·(eq \(AD,\s\up6(→))-eq \(AB,\s\up6(→)))
=eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)\(AB,\s\up6(→))+\(AD,\s\up6(→))+\(AG,\s\up6(→))-\(AD,\s\up6(→))))·(eq \(AD,\s\up6(→))-eq \(AB,\s\up6(→)))
=eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)\(AB,\s\up6(→))+\f(1,2)\(AC,\s\up6(→))+\f(1,2)\(AD,\s\up6(→))))·(eq \(AD,\s\up6(→))-eq \(AB,\s\up6(→)))
=eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)a+\f(1,2)b+\f(1,2)c))·(c-a)
=eq \f(1,2).
已知MN是正方体内切球的一条直径,点P在正方体表面上运动,正方体的棱长是2,则eq \(PM,\s\up6(→))·eq \(PN,\s\up6(→))的取值范围为( )
A.eq \b\lc\[\rc\](\a\vs4\al\c1(0,4)) B.eq \b\lc\[\rc\](\a\vs4\al\c1(0,2)) C.eq \b\lc\[\rc\](\a\vs4\al\c1(1,4)) D.eq \b\lc\[\rc\](\a\vs4\al\c1(1,2))
答案 B
解析 设正方体内切球的球心为O,则OM=ON=1,
eq \(PM,\s\up6(→))·eq \(PN,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\(PO,\s\up6(→))+\(OM,\s\up6(→))))·eq \b\lc\(\rc\)(\a\vs4\al\c1(\(PO,\s\up6(→))+\(ON,\s\up6(→))))=eq \(PO,\s\up6(→))2+eq \(PO,\s\up6(→))·eq \b\lc\(\rc\)(\a\vs4\al\c1(\(OM,\s\up6(→))+\(ON,\s\up6(→))))+eq \(OM,\s\up6(→))·eq \(ON,\s\up6(→)),
∵MN为球O的直径,
∴eq \(OM,\s\up6(→))+eq \(ON,\s\up6(→))=0,eq \(OM,\s\up6(→))·eq \(ON,\s\up6(→))=-1,
∴eq \(PM,\s\up6(→))·eq \(PN,\s\up6(→))=eq \(PO,\s\up6(→))2-1,
又P在正方体表面上移动,
∴当P为正方体顶点时,eq \b\lc\|\rc\|(\a\vs4\al\c1(\(PO,\s\up6(→))))最大,最大值为eq \r(3);当P为内切球与正方体的切点时,eq \b\lc\|\rc\|(\a\vs4\al\c1(\(PO,\s\up6(→))))最小,最小值为1,
∴eq \(PO,\s\up6(→))2-1∈eq \b\lc\[\rc\](\a\vs4\al\c1(0,2)),
即eq \(PM,\s\up6(→))·eq \(PN,\s\up6(→))的取值范围为eq \b\lc\[\rc\](\a\vs4\al\c1(0,2)).
思维升华 由向量数量积的定义知,要求a与b的数量积,需已知|a|,|b|和〈a,b〉,a与b的夹角与方向有关,一定要根据方向正确判定夹角的大小,才能使a·b计算准确.
跟踪训练2 如图,正四面体ABCD(所有棱长均相等)的棱长为1,E,F,G,H分别是正四面体ABCD中各棱的中点,设eq \(AB,\s\up6(→))=a,eq \(AC,\s\up6(→))=b,eq \(AD,\s\up6(→))=c,试采用向量法解决下列问题:
(1)求eq \(EF,\s\up6(→))的模长;
(2)求eq \(EF,\s\up6(→)),eq \(GH,\s\up6(→))的夹角.
解 (1)因为正四面体ABCD的棱长为1,E,F,G,H分别是正四面体ABCD中各棱的中点,
eq \(AB,\s\up6(→))=a,eq \(AC,\s\up6(→))=b,eq \(AD,\s\up6(→))=c,
所以eq \(BE,\s\up6(→))=eq \f(1,2)eq \(BC,\s\up6(→))=eq \f(1,2)(eq \(AC,\s\up6(→))-eq \(AB,\s\up6(→)))=eq \f(1,2)(b-a),
eq \(AF,\s\up6(→))=eq \f(1,2)eq \(AD,\s\up6(→))=eq \f(1,2)c.
所以eq \(EF,\s\up6(→))=eq \(EB,\s\up6(→))+eq \(BA,\s\up6(→))+eq \(AF,\s\up6(→))
=-eq \f(1,2)(b-a)-a+eq \f(1,2)c
=eq \f(1,2)(c-a-b),
所以|eq \(EF,\s\up6(→))|2=eq \f(1,4)(c-a-b)2
=eq \f(1,4)(c2+a2+b2-2a·c+2a·b-2b·c)
=eq \f(1,4)(1+1+1-2×1×1×cs 60°+2×1×1×cs 60°-2×1×1×cs 60°)=eq \f(1,2),
故|eq \(EF,\s\up6(→))|=eq \f(\r(2),2).
(2)在正四面体ABCD中,eq \(EF,\s\up6(→))=eq \f(1,2)(c-a-b),|eq \(EF,\s\up6(→))|=eq \f(\r(2),2).
同理,eq \(GH,\s\up6(→))=eq \f(1,2)(b+c-a),|eq \(GH,\s\up6(→))|=eq \f(\r(2),2).
所以cs〈eq \(EF,\s\up6(→)),eq \(GH,\s\up6(→))〉=eq \f(\(EF,\s\up6(→))·\(GH,\s\up6(→)),|\(EF,\s\up6(→))||\(GH,\s\up6(→))|)
=eq \f(\f(1,2)c-a-b·\f(1,2)b+c-a,\f(\r(2),2)×\f(\r(2),2))
=eq \f(1,2)[(c-a)2-b2]
=eq \f(1,2)(c2+a2-2c·a-b2)
=eq \f(1,2)(1+1-2×1×1×cs 60°-1)
=0,
所以eq \(EF,\s\up6(→))与eq \(GH,\s\up6(→))的夹角为90°.
题型四 向量法证明平行、垂直
例3 如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2eq \r(5),AA1=eq \r(7),点E和F分别为BC和A1C的中点.
(1)求证:EF∥平面A1B1BA;
(2)求证:平面AEA1⊥平面BCB1.
证明 因为AB=AC,E为BC的中点,
所以AE⊥BC.
因为AA1⊥平面ABC,AA1∥BB1,
所以过E作平行于BB1的垂线为z轴,EC,EA所在直线分别为x轴,y轴,
建立如图所示的空间直角坐标系.
因为AB=3,BE=eq \r(5),
所以AE=2,
所以E(0,0,0),C(eq \r(5),0,0),A(0,2,0),B(-eq \r(5),0,0).
A1(0,2,eq \r(7)),则Feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(5),2),1,\f(\r(7),2))).
(1)eq \(EF,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(5),2),1,\f(\r(7),2))),eq \(AB,\s\up6(→))=(-eq \r(5),-2,0),eq \(AA1,\s\up6(→))=(0,0,eq \r(7)).
设平面AA1B1B的一个法向量为n=(x,y,z),
则eq \b\lc\{\rc\ (\a\vs4\al\c1(n·\(AB,\s\up6(→))=0,,n·\(AA1,\s\up6(→))=0,))
所以eq \b\lc\{\rc\ (\a\vs4\al\c1(-\r(5)x-2y=0,,\r(7)z=0,))取eq \b\lc\{\rc\ (\a\vs4\al\c1(x=-2,,y=\r(5),,z=0,))
所以n=(-2,eq \r(5),0).
因为eq \(EF,\s\up6(→))·n=eq \f(\r(5),2)×(-2)+1×eq \r(5)+eq \f(\r(7),2)×0=0,
所以eq \(EF,\s\up6(→))⊥n.
又EF⊈平面A1B1BA,
所以EF∥平面A1B1BA.
(2)因为EC⊥平面AEA1,
所以eq \(EC,\s\up6(→))=(eq \r(5),0,0)为平面AEA1的一个法向量.
又EA⊥平面BCB1,
所以eq \(EA,\s\up6(→))=(0,2,0)为平面BCB1的一个法向量.
因为eq \(EC,\s\up6(→))·eq \(EA,\s\up6(→))=0,所以eq \(EC,\s\up6(→))⊥eq \(EA,\s\up6(→)),
故平面AEA1⊥平面BCB1.
思维升华 (1)利用向量法证明平行问题
①线线平行:方向向量平行.
②线面平行:平面外的直线方向向量与平面法向量垂直.
③面面平行:两平面的法向量平行.
(2)利用向量法证明垂直问题的类型及常用方法
跟踪训练3 如图正方形ABCD的边长为2eq \r(2),四边形BDEF是平行四边形,BD与AC交于点G,O为GC的中点,FO=eq \r(3),且FO⊥平面ABCD.
(1)求证:AE∥平面BCF;
(2)求证:CF⊥平面AEF.
证明 如图,
取BC的中点H,连接OH,则OH∥BD,又四边形ABCD为正方形,
∴AC⊥BD,∴OH⊥AC,
故以O为原点,建立如图所示的空间直角坐标系,则
A(3,0,0),C(-1,0,0),D(1,-2,0),F(0,0,eq \r(3)),B(1,2,0).
eq \(BC,\s\up6(→))=(-2,-2,0),eq \(CF,\s\up6(→))=(1,0,eq \r(3)),eq \(BF,\s\up6(→))=(-1,-2,eq \r(3)),eq \(AD,\s\up6(→))=(-2,-2,0),eq \(AF,\s\up6(→))=(-3,0,eq \r(3)).
(1)设平面BCF的一个法向量为n=(x,y,z).
则eq \b\lc\{\rc\ (\a\vs4\al\c1(n·\(BC,\s\up6(→))=0,,n·\(CF,\s\up6(→))=0,))即eq \b\lc\{\rc\ (\a\vs4\al\c1(-2x-2y=0,,x+\r(3)z=0,))
取z=1,得n=(-eq \r(3),eq \r(3),1).
又四边形BDEF为平行四边形,
∴eq \(DE,\s\up6(→))=eq \(BF,\s\up6(→))=(-1,-2,eq \r(3)),
∴eq \(AE,\s\up6(→))=eq \(AD,\s\up6(→))+eq \(DE,\s\up6(→))=eq \(BC,\s\up6(→))+eq \(BF,\s\up6(→))
=(-2,-2,0)+(-1,-2,eq \r(3))
=(-3,-4,eq \r(3)),
∴eq \(AE,\s\up6(→))·n=3eq \r(3)-4eq \r(3)+eq \r(3)=0,
∴eq \(AE,\s\up6(→))⊥n,
又AE⊈平面BCF,
∴AE∥平面BCF.
(2)∵eq \(AF,\s\up6(→))=(-3,0,eq \r(3)),eq \(CF,\s\up6(→))=(1,0,eq \r(3)),
由(1)知eq \(AE,\s\up6(→))=(-3,-4,eq \r(3)),
∴eq \(CF,\s\up6(→))·eq \(AF,\s\up6(→))=-3+3=0,
eq \(CF,\s\up6(→))·eq \(AE,\s\up6(→))=-3+3=0,
∴eq \(CF,\s\up6(→))⊥eq \(AF,\s\up6(→)),eq \(CF,\s\up6(→))⊥eq \(AE,\s\up6(→)),
即CF⊥AF,CF⊥AE,
又AE∩AF=A,AE,AF平面AEF,
∴CF⊥平面AEF.
课时精练
1.已知向量a=(1,1,0),b=(-1,0,2),且ka+b与2a-b互相垂直,则k的值是( )
A.eq \f(7,5) B.2 C.eq \f(5,3) D.1
答案 A
解析 因为a=(1,1,0),b=(-1,0,2),
所以a·b=-1,|a|=eq \r(2),|b|=eq \r(5),
又ka+b与2a-b互相垂直,
所以(ka+b)·(2a-b)=0,
即2k|a|2-ka·b+2a·b-|b|2=0,
即4k+k-2-5=0,所以k=eq \f(7,5).
2.若两条不重合直线l1和l2的方向向量分别为v1=(1,0,-1),v2=(-2,0,2),则l1和l2的位置关系是( )
A.平行 B.相交
C.垂直 D.不确定
答案 A
解析 因为两条不重合直线l1和l2的方向向量分别为v1=(1,0,-1),v2=(-2,0,2),
所以v2=-2v1,
即v2与v1共线,
所以两条不重合直线l1和l2的位置关系是平行.
3.(2020·成都七中月考)已知A(1,0,0),B(0,1,0),C(0,0,1),则下列向量是平面ABC的法向量的是( )
A.(-1,1,1) B.(1,-1,1)
C.eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(3),3),-\f(\r(3),3),-\f(\r(3),3))) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),3),\f(\r(3),3),-\f(\r(3),3)))
答案 C
解析 ∵eq \(AB,\s\up6(→))=(-1,1,0),eq \(AC,\s\up6(→))=(-1,0,1),
设n=(x,y,z)为平面ABC的法向量,
则eq \b\lc\{\rc\ (\a\vs4\al\c1(n·\(AB,\s\up6(→))=0,,n·\(AC,\s\up6(→))=0,))化简得eq \b\lc\{\rc\ (\a\vs4\al\c1(-x+y=0,,-x+z=0,))
∴x=y=z.
4.如图,在平行六面体ABCD-A′B′C′D′中,AC与BD的交点为O,点M在BC′上,且BM=2MC′,则下列向量中与eq \(OM,\s\up6(→))相等的向量是( )
A.-eq \f(1,2)eq \(AB,\s\up6(→))+eq \f(7,6)eq \(AD,\s\up6(→))+eq \f(2,3)eq \(AA′,\s\up6(——→))
B.-eq \f(1,2)eq \(AB,\s\up6(→))+eq \f(5,6)eq \(AD,\s\up6(→))+eq \f(1,3)eq \(AA′,\s\up6(——→))
C.eq \f(1,2)eq \(AB,\s\up6(→))+eq \f(1,6)eq \(AD,\s\up6(→))+eq \f(2,3)eq \(AA′,\s\up6(——→))
D.eq \f(1,2)eq \(AB,\s\up6(→))-eq \f(1,6)eq \(AD,\s\up6(→))+eq \f(1,3)eq \(AA′,\s\up6(——→))
答案 C
解析 因为BM=2MC′,所以eq \(BM,\s\up6(→))=eq \f(2,3)eq \(BC′,\s\up6(——→)),
在平行六面体ABCD-A′B′C′D′中,
eq \(OM,\s\up6(→))=eq \(OB,\s\up6(→))+eq \(BM,\s\up6(→))=eq \(OB,\s\up6(→))+eq \f(2,3)eq \(BC′,\s\up6(——→))=eq \f(1,2)eq \(DB,\s\up6(→))+eq \f(2,3)(eq \(AD,\s\up6(→))+eq \(AA′,\s\up6(——→)))=eq \f(1,2)(eq \(AB,\s\up6(→))-eq \(AD,\s\up6(→)))+eq \f(2,3)(eq \(AD,\s\up6(→))+eq \(AA′,\s\up6(——→)))
=eq \f(1,2)eq \(AB,\s\up6(→))+eq \f(1,6)eq \(AD,\s\up6(→))+eq \f(2,3)eq \(AA′,\s\up6(——→)).
5.在空间四边形ABCD中,eq \(AB,\s\up6(→))·eq \(CD,\s\up6(→))+eq \(AC,\s\up6(→))·eq \(DB,\s\up6(→))+eq \(AD,\s\up6(→))·eq \(BC,\s\up6(→))等于( )
A.-1 B.0
C.1 D.不确定
答案 B
解析 如图,
令eq \(AB,\s\up6(→))=a,eq \(AC,\s\up6(→))=b,eq \(AD,\s\up6(→))=c,
则eq \(AB,\s\up6(→))·eq \(CD,\s\up6(→))+eq \(AC,\s\up6(→))·eq \(DB,\s\up6(→))+eq \(AD,\s\up6(→))·eq \(BC,\s\up6(→))=a·(c-b)+b·(a-c)+c·(b-a)=a·c-a·b+b·a-b·c+c·b-c·a=0.
6.如图,在大小为45°的二面角A-EF-D中,四边形ABFE,CDEF都是边长为1的正方形,则B,D两点间的距离是( )
A.eq \r(3) B.eq \r(2) C.1 D.eq \r(3-\r(2))
答案 D
解析 ∵eq \(BD,\s\up6(→))=eq \(BF,\s\up6(→))+eq \(FE,\s\up6(→))+eq \(ED,\s\up6(→)),
∴|eq \(BD,\s\up6(→))|2=|eq \(BF,\s\up6(→))|2+|eq \(FE,\s\up6(→))|2+|eq \(ED,\s\up6(→))|2+2eq \(BF,\s\up6(→))·eq \(FE,\s\up6(→))+2eq \(FE,\s\up6(→))·eq \(ED,\s\up6(→))+2eq \(BF,\s\up6(→))·eq \(ED,\s\up6(→))=1+1+1-eq \r(2)=3-eq \r(2),
故|eq \(BD,\s\up6(→))|=eq \r(3-\r(2)).
7.(2020·西安月考)如图所示,在四面体OABC中,eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,eq \(OC,\s\up6(→))=c,D为BC的中点,E为AD的中点,则eq \(OE,\s\up6(→))=________________(用a,b,c表示).
答案 eq \f(1,2)a+eq \f(1,4)b+eq \f(1,4)c
解析 eq \(OE,\s\up6(→))=eq \(OA,\s\up6(→))+eq \(AE,\s\up6(→))=eq \(OA,\s\up6(→))+eq \f(1,2)eq \(AD,\s\up6(→))
=eq \(OA,\s\up6(→))+eq \f(1,2)(eq \(OD,\s\up6(→))-eq \(OA,\s\up6(→)))=eq \f(1,2)eq \(OA,\s\up6(→))+eq \f(1,2)eq \(OD,\s\up6(→))
=eq \f(1,2)eq \(OA,\s\up6(→))+eq \f(1,2)×eq \f(1,2)(eq \(OB,\s\up6(→))+eq \(OC,\s\up6(→)))=eq \f(1,2)a+eq \f(1,4)b+eq \f(1,4)c.
8.若a=(1,1,0),b=(-1,0,2),则与a+b同方向的单位向量是____________.
答案 eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(\r(5),5),\f(2\r(5),5)))
解析 与a+b同方向的单位向量是eq \f(1,\r(5))(0,1,2)=eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(\r(5),5),\f(2\r(5),5))).
9.已知A(1,-2,11),B(4,2,3),C(x,y,15)三点共线,则xy=________.
答案 2
解析 由三点共线得向量eq \(AB,\s\up6(→))与eq \(AC,\s\up6(→))共线,
即eq \(AB,\s\up6(→))=keq \(AC,\s\up6(→)),
(3,4,-8)=k(x-1,y+2,4),eq \f(x-1,3)=eq \f(y+2,4)=eq \f(4,-8),
解得x=-eq \f(1,2),y=-4,
∴xy=2.
10.在一直角坐标系中,已知A(-1,6),B(3,-8),现沿x轴将坐标平面折成60°的二面角,则折叠后A,B两点间的距离为________.
答案 2eq \r(17)
解析 在直角坐标系中,已知A(-1,6),B(3,-8),现沿x轴将坐标平面折成60°的二面角后,
A(-1,6)在平面Oxy上的射影为C,
作BD⊥x轴,交x轴于点D,
所以eq \(AB,\s\up6(→))=eq \(AC,\s\up6(→))+eq \(CD,\s\up6(→))+eq \(DB,\s\up6(→)),
所以eq \(AB,\s\up6(→))2=eq \(AC,\s\up6(→))2+eq \(CD,\s\up6(→))2+eq \(DB,\s\up6(→))2+2eq \(AC,\s\up6(→))·eq \(CD,\s\up6(→))+2eq \(CD,\s\up6(→))·eq \(DB,\s\up6(→))+2eq \(AC,\s\up6(→))·eq \(DB,\s\up6(→)),
=62+42+82-2×6×8×eq \f(1,2)=68,
所以AB=2eq \r(17).
11.如图,已知在直三棱柱ABC-A1B1C1中,AC⊥BC,D为AB的中点,AC=BC=BB1.
(1)求证:BC1⊥AB1;
(2)求证:BC1∥平面CA1D.
证明 如图,以C1为原点,C1A1,C1B1,C1C所在直线分别为x轴,y轴,z轴建立空间直角坐标系.
设AC=BC=BB1=2,
则A(2,0,2),B(0,2,2),C(0,0,2),A1(2,0,0),B1(0,2,0),C1(0,0,0),D(1,1,2).
(1)连接AB1,
∵eq \(BC1,\s\up6(—→))=(0,-2,-2),eq \(AB1,\s\up6(—→))=(-2,2,-2),
∴eq \(BC1,\s\up6(—→))·eq \(AB1,\s\up6(—→))=0-4+4=0,
∴eq \(BC1,\s\up6(—→))⊥eq \(AB1,\s\up6(—→)),即BC1⊥AB1.
(2)取A1C的中点E,连接DE,
∵E(1,0,1),∴eq \(ED,\s\up6(→))=(0,1,1),
又eq \(BC1,\s\up6(—→))=(0,-2,-2),∴eq \(ED,\s\up6(→))=-eq \f(1,2)eq \(BC1,\s\up6(—→)),
且ED和BC1不重合,则ED∥BC1.
又ED平面CA1D,BC1⊈平面CA1D,
故BC1∥平面CA1D.
12.在平行六面体ABCD-A1B1C1D1中,点E,F分别在棱B1B,D1D上,且BE=eq \f(1,3)BB1,DF=eq \f(2,3)DD1.
(1)求证:A,E,C1,F四点共面;
(2)若eq \(EF,\s\up6(→))=xeq \(AB,\s\up6(→))+yeq \(AD,\s\up6(→))+zeq \(AA1,\s\up6(→)),求x+y+z的值.
(1)证明 连接AC1(图略),
∵eq \(AC1,\s\up6(—→))=eq \(AB,\s\up6(→))+eq \(AD,\s\up6(→))+eq \(AA1,\s\up6(—→))
=eq \(AB,\s\up6(→))+eq \(AD,\s\up6(→))+eq \f(1,3)eq \(AA1,\s\up6(—→))+eq \f(2,3)eq \(AA1,\s\up6(—→))
=eq \b\lc\(\rc\)(\a\vs4\al\c1(\(AB,\s\up6(→))+\f(1,3)\(AA1,\s\up6(—→))))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\(AD,\s\up6(→))+\f(2,3)\(AA1,\s\up6(—→))))
=(eq \(AB,\s\up6(→))+eq \(BE,\s\up6(→)))+(eq \(AD,\s\up6(→))+eq \(DF,\s\up6(→)))=eq \(AE,\s\up6(→))+eq \(AF,\s\up6(→)).
∴A,E,C1,F四点共面.
(2)解 ∵eq \(EF,\s\up6(→))=eq \(AF,\s\up6(→))-eq \(AE,\s\up6(→))
=eq \(AD,\s\up6(→))+eq \(DF,\s\up6(→))-(eq \(AB,\s\up6(→))+eq \(BE,\s\up6(→)))
=eq \(AD,\s\up6(→))+eq \f(2,3)eq \(DD1,\s\up6(—→))-eq \(AB,\s\up6(→))-eq \f(1,3)eq \(BB1,\s\up6(—→))
=-eq \(AB,\s\up6(→))+eq \(AD,\s\up6(→))+eq \f(1,3)eq \(AA1,\s\up6(—→)),
又eq \(EF,\s\up6(→))=xeq \(AB,\s\up6(→))+yeq \(AD,\s\up6(→))+zeq \(AA1,\s\up6(—→)),
∴x=-1,y=1,z=eq \f(1,3).
∴x+y+z=-1+1+eq \f(1,3)=eq \f(1,3).
13.已知向量a·b=b·c=a·c,b=(3,0,-1),c=(-1,5,-3),下列等式中不正确的是( )
A.(a·b)c=b·c
B.(a+b)·c=a·(b+c)
C.(a+b+c)2=a2+b2+c2
D.eq \b\lc\|\rc\|(\a\vs4\al\c1(a+b+c))=eq \b\lc\|\rc\|(\a\vs4\al\c1(a-b-c))
答案 A
解析 由题意知b·c=-3+0+3=0,
所以a·b=b·c=a·c=0,
(a·b)c=0,b·c=0,不相等,所以A选项错误;
(a+b)·c-a·(b+c)=a·c+b·c-a·b-a·c=0,
所以(a+b)·c=a·(b+c),所以B选项正确;
(a+b+c)2=a2+b2+c2+2a·b+2b·c+2a·c=a2+b2+c2,所以C选项正确;
(a-b-c)2=a2+b2+c2-2a·b+2b·c-2a·c=a2+b2+c2,
即(a+b+c)2=(a-b-c)2,|a+b+c|=|a-b-c|,所以D选项正确.
14.如图,已知四棱柱ABCD-A1B1C1D1的底面A1B1C1D1为平行四边形,E为棱AB的中点,eq \(AF,\s\up6(→))=eq \f(1,3)eq \(AD,\s\up6(→)),eq \(AG,\s\up6(→))=2eq \(GA1,\s\up6(—→)),AC1与平面EFG交于点M,则eq \f(AM,AC1)=________.
答案 eq \f(2,13)
解析 由题图知,设eq \(AM,\s\up6(→))=λeq \(AC1,\s\up6(—→))(0
相关试卷
这是一份2024年高考数学第一轮复习8.5 空间向量及其应用(解析版),共36页。试卷主要包含了空间向量的有关概念,空间向量的有关定理,空间位置关系的向量表示等内容,欢迎下载使用。
这是一份2024高考数学第一轮复习:8.5 空间向量及其应用(原卷版),共13页。试卷主要包含了空间向量的有关概念,空间向量的有关定理,空间向量的数量积,空间位置关系的向量表示等内容,欢迎下载使用。
这是一份2024高考数学第一轮复习:8.5 空间向量及其应用(解析版),共30页。试卷主要包含了空间向量的有关概念,空间向量的有关定理,空间位置关系的向量表示等内容,欢迎下载使用。