16-21年高考数学高考真题专题立体几何(文)
展开
这是一份16-21年高考数学高考真题专题立体几何(文),共17页。
文
(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是EQ \F(28π,3),则它的表面积是
(A)17π (B)18π (C)20π (D)28π
18.(本题满分12分)
如图,在已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.
(I)证明: G是AB的中点;
(II)在答题卡第(18)题图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.
(4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为
(A)(B)(C)(D)
(7) 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为
(A)20π(B)24π(C)28π(D)32π
(19)(本小题满分12分)
如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将沿EF折到的位置.
(I)证明:;
(II)若,求五棱锥体积.
(10)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为
(A) (B) (C)90 (D)81
11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是
(A) (B) (C) (D)
(19)(本小题满分12分)
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(I)证明MN∥平面PAB;
(II)求四面体N-BCM的体积.
2017年
文
6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是
A. B.C.D.
16.已知三棱锥S−ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S−ABC的体积为9,则球O的表面积为________.
18.(12分)
如图,在四棱锥P−ABCD中,AB//CD,且.
证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,且四棱锥P−ABCD的体积为,求该四棱锥的侧面积.
6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为
A. B. C. D.
15.长方体的长,宽,高分别为,其顶点都在球的球面上,则球的表面积为 .
18.(12分)
如图,四棱锥中,侧面为等边三角形且垂直于底面,
(1)证明:直线平面;
(2)若△的面积为,求四棱锥的体积.
9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为
A.B.C. D.
10.在正方体中,E为棱CD的中点,则
A.B.C.D.
19.(12分)
如图,四面体ABCD中,△ABC是正三角形,AD=CD
(1)证明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.
2018年
文
5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为
A.B.C.D.
9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为
A.B. C. D.2
10.在长方体中,,与平面所成的角为,则该长方体的体积为
A.B.C.D.
18.(12分)
如图,在平行四边形中,,, 以为折痕将△折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)为线段上一点,为线段上一点,且,求三棱锥的体积.
9.在正方体中,为棱的中点,则异面直线与所成角的正切值为
A.B.C. D.
16.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.
19.(12分)
如图,在三棱锥中,,,为的中点
(1)证明:平面;
(2)若点在棱上,且,求点到平面的距离.
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
12.设,,,是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为
A.B.C.D.
19.(12分)
如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点.
(1)证明:平面平面;
(2)在线段上是否存在点,使得平面?说明理由.
2019年
文
16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,那么P到平面ABC的距离为___________.
19.(12分)
如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.
7.设α,β为两个平面,则α∥β的充要条件是
A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行
C.α,β平行于同一条直线 D.α,β垂直于同一平面
16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)
17.(12分)
如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.
(1)证明:BE⊥平面EB1C1;
(2)若AE=A1E,AB=3,求四棱锥的体积.
8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则
A.BM=EN,且直线BM,EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线
C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线
16.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体挖去四棱锥O−EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,,3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为___________g.
19.(12分)
图1是由矩形ADEB,ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,
∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图2中的四边形ACGD的面积.
2020年
文
3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为
A. B.C.D.
12.已知为球的球面上的三个点,⊙为的外接圆,若⊙的面积为,,则球的表面积为
A. B. C. D.
19.(12分)
如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,∠APC=90°.
(1)证明:平面PAB⊥平面PAC;
(2)设DO=,圆锥的侧面积为,求三棱锥P−ABC的体积.
9.如图为某几何体的三视图,则该几何体的表面积是
A.6+4B.4+4C.6+2D.4+2
16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.
19.(12分)
如图,在长方体中,点,分别在棱,上,且,.证明:
(1)当时,;
(2)点在平面内
11.已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为
A. B. C.1 D.
16.设有下列四个命题:
p1:两两相交且不过同一点的三条直线必在同一平面内.
p2:过空间中任意三点有且仅有一个平面.
p3:若空间两条直线不相交,则这两条直线平行.
p4:若直线l平面α,直线m⊥平面α,则m⊥l.
则下述命题中所有真命题的序号是__________.
②③④
20.(12分)
如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.
(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;
(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=,求四棱锥B–EB1C1F的体积.
2021
文
7.在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A-EFG后,所得多面体的三视图中,正视图如右图所示,则相应的侧视图是( )
B.C.D.
14.己知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为_______.
19.已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形.AB=BC=2,E,F分别为AC和CC1的中点,BF⊥A1B1.
(1)求三棱锥F-EBC的体积;
(2)已知D为棱A1B1上的点,证明:BF⊥DE.
10.在正方体中,P为的中点,则直线与所成的角为( )
A. B. C. D.
16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).
18.(12分)
如图,四棱锥的底面是矩形,底面,M为的中点,且.
(1)证明:平面平面;
(2)若,求四棱锥的体积.
相关试卷
这是一份16-21年数学高考真题专题圆锥曲线(大题)文理皆含,共17页。试卷主要包含了当m变化时,解答下列问题等内容,欢迎下载使用。
这是一份16-21年数学高考真题专题圆锥曲线(小题)文理皆含,共9页。试卷主要包含了已知F为抛物线C,已知双曲线C,已知椭圆C,设抛物线C,若抛物线y2=2px等内容,欢迎下载使用。
这是一份16-21年数学高考真题专题统计概率(理),共18页。试卷主要包含了5万元的农户比率估计为6%,25a等内容,欢迎下载使用。