所属成套资源:新九年级数学上册暑假精品课程(人教版)
- 第二十讲 商品利润最大问题(解析版) --【暑假辅导班】2021年新九年级数学上册暑假精品课程(人教版) 教案 5 次下载
- 第二十讲 商品利润最大问题(原卷版) --【暑假辅导班】2021年新九年级数学上册暑假精品课程(人教版) 教案 2 次下载
- 第二十一讲 拱桥问题和运动中的抛物线(原卷版) -【暑假辅导班】2021年新九年级数学上册暑假精品课程(人教版) 教案 2 次下载
- 第二十一讲 拱桥问题和运动中的抛物线(解析版) -【暑假辅导班】2021年新九年级数学上册暑假精品课程(人教版) 教案 3 次下载
- 第二十二讲 二次函数单元总结与达标(解析版) -【暑假辅导班】2021年新九年级数学上册暑假精品课程(人教版) 教案 教案 3 次下载
人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数教学设计
展开
这是一份人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数教学设计,共6页。教案主要包含了知识梳理,考点总结与例题讲析等内容,欢迎下载使用。
1.二次函数的概念
一般地,形如y=ax2+bx+c(a,b,c是常数,a ≠0的函数,叫做二次函数.
注意: (1)等号右边必须是整式;(2)自变量的最高次数是2;(3)当b=0,c=0时,y=ax2是特殊的二次函数.
2.二次函数的图象与性质
3.二次函数图像的平移
4.二次函数表达式的求法
(1)一般式法:y=ax2+bx+c (a≠ 0)
(2)顶点法:y=a(x-h)2+k(a≠0)
(3)交点法:y=a(x-x1)(x-x2)(a≠0)
5.二次函数与一元二次方程的关系
二次函数y=ax2+bx+c的图象和x轴交点有三种情况:有两个交点,有两个重合的交点,没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.
6.二次函数的应用
二次函数的应用包括以下两个方面
(1)用二次函数表示实际问题变量之间的关系,解决最大化问题(即最值问题);
(2)利用二次函数的图像求一元二次方程的近似解.
(3)一般步骤:(1)找出问题中的变量和常量以及它们之间 的函数关系;(2)列出函数关系式,并确定自变量的取值范围;(3)利用二次函数的图象及性质解决实际问题;(4)检验结果的合理性,是否符合实际意义.
【考点总结与例题讲析】
考点一: 求抛物线的顶点、对称轴、最值
【例题1】抛物线y=x2-2x+3的顶点坐标为________.
解决此类题目可以先把二次函数y=ax2+bx+c配方为顶点式y=a(x-h)2+k的形式,得到:对称轴是直线x=h,最值为y=k,顶点坐标为(h,k);也可以直接利用公式求解.
考点二: 二次函数的图像与性质及函数值的大小比较
方法总结:
1.可根据对称轴的位置确定b的符号:b=0⇔对称轴是y轴;a、b同号⇔对称轴在y轴左侧;a、b异号⇔对称轴在y轴右侧.这个规律可简记为“左同右异”.
2.当x=1时,函数y=a+b+c.当图像上横坐标
x=1的点在x轴上方时,a+b+c>0;当图像上横坐标x=1的点在x轴上时,a+b+c=0;当图像上横坐标x=1的点在x轴下方时,a+b+c<0.同理,可由图像上横坐标x=-1的点判断a-b+c的符号.
【例题2】二次函数y=-x2+bx+c的图像如图所示,若点A(x1,y1),B(x2,y2)在此函数图像上,且x1
相关教案
这是一份初中数学人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数教案设计,共5页。教案主要包含了学习目标,新课讲解等内容,欢迎下载使用。
这是一份初中人教版22.1.4 二次函数y=ax2+bx+c的图象和性质教案,共8页。教案主要包含了学习目标,新课讲解等内容,欢迎下载使用。
这是一份人教版九年级上册第二十一章 一元二次方程综合与测试教学设计及反思,共10页。教案主要包含了单元知识梳理,考点类型总结,例题解析等内容,欢迎下载使用。