浙教版第六章 反比例函数综合与测试教学设计
展开一、反比例函数的几何意义
1.反比例函数的几何意义:如图,在反比例函数图象上任选一点,向两坐标轴作垂线,垂线与坐标轴所围成矩形的面积为。如图二,所围成三角形的面积为
二、利用k的几何意义进行面积转化
1.如图,直线与反比例函数()交于、两点,与、轴的交点分别为、,
那么,此方法是绝大部分学生选用的方法。但是,从效率来讲,就比较低
2.如图,过点、作轴的垂线,垂足分别为、,则根据的几何意义可得,,而,所以,此方法的好处,在于方便,快捷,不易出错。
1、如图,△BOD都是等腰直角三角形,过点B作AB⊥OB交反比例函数y=(x>0)于点A,过点A作AC⊥BD于点C,若S△BOD﹣S△ABC=3,则k的值为 .
2、如图,△OAC和△BAD都是等腰直角三角,∠ACO=∠ADB=90°,反比例函数y=的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD= .
5、如图,直线y1=k1x+b与双曲线y2=在第一象限内交于A、B两点,已知A(1,m),B(2,1).
(1)k1= ,k2= ,b= .
(2)直接写出不等式y2>y1的解集;
(3)设点P是线段AB上的一个动点,过点P作PD⊥x轴于点D,E是y轴上一点,求△PED的面积S的最大值.
4、正方形ABCD的顶点A(1,1),点C(3,3),反比例函数y=(x>0).
(1)如图1,双曲线经过点D时求反比例函数y=(x>0)的关系式;
(2)如图2,正方形ABCD向下平移得到正方形A′B′C′D′,边A'B'在x轴上,反比例函数y=(x>0)的图象分别交正方形A′B′C′D′的边C'D′、边B′C′于点F、E,
①求△A'EF的面积;
②如图3,x轴上一点P,是否存在△PEF是等腰三角形,若存在直接写出点P坐标,若不存在明理由.
12、如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.
(1)求反比例函数的解析式;
(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;
(3)若点P在y轴上,是否存在点P,使△ABP是以AB为一直角边的直角三角形?若存在,求出所有符合条件的P点坐标;若不存在,请说明理由.
题型二、反比例函数中的有关最值问题
一、k的几何意义与反比例函数对称性
1.如图一,直线与反比例函数()交于、两点,与、轴的交点分别为、,
那么,此两种方法是绝大部分学生选用的方法。常规方法,费时、费力、而且还易计算出错。
2.如图二,我们知道反比例函数的图象是双曲线,关于原点成中心对称,那么延长交双曲线于点,连接、则,,因此可以将的面积转化为梯形的面积
1、如图,已知一次函数y=x+2的图象分别与x轴、y轴交于点A、C与反比列函数y=的图象在第一象限内交于点P,过点P作PB⊥x轴,垂足为B,且△ABP的面积为9.
(1)点A的坐标为 ,点C的坐标为 ,点P的坐标为 ;
(2)已知点Q在反比例函数y=的图象上,其横坐标为6,在x轴上确定一点M使得△PQM的周长最小,求出点M的坐标.
2、如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.
(1)求一次函数、反比例函数的解析式;
(2)根据图象直接写出kx+b<的x的取值范围;
(3)点D为反比例函数图象上使得四边形BCPD为菱形的一点,点E为y轴上的一动点,当|DE﹣PE|最大时,求点E的坐标.
3、菱形ABCD的顶点C与原点O重合,点B落在y轴正半轴上,点A、D落在第一象限内,且D点坐标为(4,3).
(1)如图1,若反比例函数y=(x>0)的图象经过点A,求k的值;
(2)菱形ABCD向右平移t个单位得到菱形A1B1C1D1,如图2.
①请直接写出点B1、D1的坐标(用含t的代数式表示):B1 、D1 ;
②是否存在反比例函数y=(x>0),使得点B1、D1同时落在y=(x>0)的图象上?若存在,求n的值;若不存在,请说明理由.
题型三、反比例函数中的直角三角形问题
1、如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A,B两点,A点的坐标为(m,6),B点的坐标为(2,3),连接OA,过B作BC⊥y轴,垂足为C.
(1)求一次函数和反比例函数的表达式;
(2)在射线CB上是否存在一点D,使得△AOD是直角三角形,求出所有可能的D点坐标.
2、如图(1),正方形ABCD顶点A、B在函数y=(k>0)的图象上,点C、D分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.
(1)若点A的横坐标为5,求点D的纵坐标;
(2)如图(2),当k=8时,分别求出正方形A′B′C′D′的顶点A′、B′两点的坐标;
(3)当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,求k的取值范围.
3、如图,如图,一次函数y=﹣x+b与反比例函数的图象交于点A(m,1)和B (1,﹣3).
(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;
(2)点P是x轴正半轴上一点,连接AP,BP.当△ABP是直角三角形时,求出点P的坐标.
题型四、反比例函数中的等腰三角形问题
1、如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,-2).
(1)求一次函数与反比例函数的解析式;
(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.
2、如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是 .
题型五、反比例函数中的特殊四边形问题
1、如图,在直角坐标系xOy中,一直线y=x+b经过点A(﹣3,0)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OA=OD,过D点作DC⊥x轴交直线y=x+b于C点,反比例函数y=(x>0)经过点C.
(1)求这条直线和反比例函数的解析式;
(2)反比例函数图象上是否存在点P,使四边形BCPD为菱形?如果存在,求出P的点坐标;如果不存在,说明理由.
[
2、如图,直线y=mx﹣1交y轴于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣(x<0)上,D点在双曲线y=(x>0)上,则k的值为 .
题型六、反比例函数中的平行四边形问题
1、如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为 .
题型七、反比例函数中的不等式有关问题
1、如图①,直线y=﹣x+b与反比例函数y=(x>0)的图象交于A(2,6),B(a,3)两点,BC∥x轴(点C在点B的右侧),且BC=m,连接OC,过点C作CD⊥x轴于点D,交反比例函数图象于点E.
(1)求b的值和反比例函数的解析式;
(2)填空:不等式﹣x+b>的解为 ;
(3)当OC平分∠BOD时,求的值;
(4)如图②,取BC中点F,连接DF,AF,BD,当四边形ABDF为平行四边形时,求点F的坐标.
题型八、反比例函数中的线段数量关系问题
1、如图,在平面直角坐标系中,矩形OABC的边BC交x轴于点D,AD⊥x轴,反比例函数y=(x>0)的图象经过点A,点D的坐标为(3,0),AB=BD.
(1)求反比例函数的解析式;
(2)点P为y轴上一动点,当PA+PB的值最小时,求出点P的坐标.
题型九、反比例函数中的几何图形存在性问题
1、如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).
(1)求一次函数与反比例函数的解析式;
(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.
题型十、反比例函数综合
1.如图,在平面直角坐标系中,直线y=与x轴,y轴分别相交于A,B两点,与反比例函数y=(x>0)的图象交于点C,点C的横坐标为4.
(1)求k的值;
(2)过点C作CD⊥y轴,垂足为D,点E是该反比例函数y=(x>0)的图象上一点,连接ED,EC,且ED=EC;
①求点E的坐标;
②求点E到直线y=的距离d的值.
2.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于第二、四象限内的A、B两点,与y轴交于点C,过点A作AM⊥x轴,垂足为M,OA=4,cs∠AOM=,点B的横坐标为.
(1)求该反比例函数和一次函数的解析式;
(2)连接MC,在x轴上找一点P,使△PMC的面积与四边形AMCO的面积相等,求P的坐标.
数学九年级下册26.2 实际问题与反比例函数教学设计: 这是一份数学九年级下册<a href="/sx/tb_c99923_t8/?tag_id=27" target="_blank">26.2 实际问题与反比例函数教学设计</a>,共7页。教案主要包含了方法总结等内容,欢迎下载使用。
初二数学实际问题与反比例函数教案: 这是一份初二数学实际问题与反比例函数教案,共3页。教案主要包含了教学目标,重点,例题的意图分析,课堂引入,例习题分析,随堂练习等内容,欢迎下载使用。
数学苏科版11.3用 反比例函数解决问题教案: 这是一份数学苏科版11.3用 反比例函数解决问题教案,共7页。教案主要包含了教学目标,教学重点,教学方法,教学过程,课堂小结,教学设计说明等内容,欢迎下载使用。