搜索
    上传资料 赚现金
    英语朗读宝

    沪科版七年级上册数学 第1章 【教案】有理数的加法

    沪科版七年级上册数学 第1章 【教案】有理数的加法第1页
    沪科版七年级上册数学 第1章 【教案】有理数的加法第2页
    还剩2页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版七年级上册第1章 有理数综合与测试教案

    展开

    这是一份初中数学沪科版七年级上册第1章 有理数综合与测试教案,共4页。
    有理数的加法教学目标:1.使学生理解有理数加法的意义,掌握有理数加法法则,能准确地进行有理数的加法运算.2.通过有理数加法的教学,体现化归的意识、数形结合和分类的思想方法,培养学生观察、比较和概括的思维能力.3.在传授知识、培养能力的同时,注意培养学生勇于探索的精神.教学重点:有理数的加法法则,能准确地进行有理数的加法运算.教学难点:异号两数相加的法则.教学教学程序 设计:
    一.类比联想 提出问题 通过引导学生回忆小学算术运算的学习过程,类比联想到在认识了有理数之后,必然要首先学习有理数的加法. 
        又通过提问,复习具有相反意义的量和用负数表示的量的实际意义,并通过实际问题,提出质疑导入新课.
    具体问题是:在下列问题中用负数表示量的实际意义是什么? 
    (1)某人第一次前进了5米,接着按同一方向又向前进了3米; 
    (2)某地气温第一天上升了3,第二天上升了-1 
    (3)某汽车先向东走4千米,再向东走-2千米。 
    紧接着,回答: 
    (1)某人两次一共前进了多少米?
    (2)某地气温两天一共上升了多少度?(3)某汽车两次一共向东走了多少千米?组织学生展开讨论,在此基础上指出:这三个问题都是求物体两次向同一方向运动的和的问题,同小学一样,可以用加法来做。但是,这些数中出现了负有理数,怎样进行有理数的加法运算呢?引出课题.
       在刚才的教学中,通过复习,加强了铺垫,刻意去引导学生回忆和复习前面学过的有关知识和方法,在旧知识的复习中找到新知识的生长点。这样,既了解了学生的认知基础,带领学生做好学习新课的知识准备,又使学生认识到本课学习的重要性,引起学生的注意,激发他们的求知个欲望,让每个学生都进行积极的思维参与. 
    二.直观演示 归纳法则 
    用6个实例讲两个有理数相加的问题: 
    (1)向东走5米,再向东走3米,两次一共向东走了多少米? 
    (2)向西走5米,再向西走3米,两次一共向东走了多少米? 
    (3)向东走5米,再向西走5米,两次一共向东走了多少米? 
    (4)向东走5米,再向西走3米,两次一共向东走了多少米? 
    (5)向东走3米,再向西走5米,两次一共向东走了多少米? 
    (6)向西走5米,再向东走0米,两次一共向东走了多少米?点拨:一共的含义是什么?通过小学的学习知道,就是两个数相加.探究:若设向东为正,向西为负,你能写出算式吗?(1)(+5)+(+3)=+8;(2)(-5)+(-3)=-8;(3)(+5)+(-5)=0;(4)(+5)+(-3)=+2;(5)(+3)+(-5)=-2;(6)(-5)+(+0)=-5;
         以上六个问题的设置运用了数学中分类的思想方法,因为两数相加,按符号异同划分为三大类。这样自然就把问题归结为三种情况:问题(1)和(2)是同号两数相加的情况;问题(3)、(4)、(5)是异号两数相加的情况;问题(6)有是有一个加数为零的情况. 
       这6个问题,都借助于数轴,先规定了向东为正,向西为负,通过电教手段具体演示验证两次运动的结果,由在数轴上表示结果的点所处的方向,确定和的符号,由表示结果的点与原点的距离,确定和的绝对值。引导学生认真观察,积极思考,通过分类、观察,最后师生共同归纳总结出有理数的加法法则.有理数的加法法则:1.同号两数相加,取与加数相同的符号,并把绝对值相加.2.异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的的加数的符号,并用较大的绝对值减去较小的绝对值.3.一个数与零相加,仍得这个数.
        归纳出法则之后,进一步启发诱导学生分析法则特点,并总结规律:两个有理数相加所得的由符号和绝对值两部分组成,计算的绝对值,实质上是进行算术数的加减,因此,有理数的加法运算,贯穿一个化归思想,即把有理数的加法运算化归为算术数的加减运算.一般步骤为: 
    (1)根据有理数的加法法则确定和的符号; 
    (2)根据有理数的加法法则进行绝对值的加减运算.
       前面已经分析过,异号两数相加的法则是学生学习的难点。因此,我抓住突破难点的关键,一是借助于数轴的直观演示,引导学生认真观察、积极思考,自己归纳法则;二是引导学生分析法则特点,总结规律,在此基础上加以记忆,从而使难点化解,并在化解难点的过程中培养学生的思维能力.
      总结出法则之后,可进一步提问:在算术里,两个不都是零的数相加,和一定大于加数,那么,对于两个有理数,相加后和还一定大于加数吗? 
      提出问题后,让学生去思考、去分析,最终要让学生明白:在有理数运算中,算术中的某些结论不一定再成立,即对于两个有理数,相加的和不一定大于加数,这是有理数的加法与算术运算的一个很大的区别. 
      三.应用迁移 巩固提高
      为了解决从掌握知识到运用知识的转化,使知识教学和智能培养结合起来,设计了例题和练习题,选题遵循由浅入深,循序渐进的原则.类型:同号、异号、0与一个数相加的三种情况的有理数相加 
    例1:计算下列各题: 
    (1)(+7)+(+6)           (2)(-5)+(-9)(3)          (4)(-10.5)+(+21.5)分析:先确定符号,在进行绝对值加减运算.解:(2)(-5)+(-9) (两个加数同号,用加法法则的第1条计算)
    =-(5+9)          (和取负号,把绝对值相加)
    =-14.例2:计算(1)(-7.5)+(+7.5);(2)(-3.5)+0.解:(1)(-7.5)+(+7.5)=0(2)(-3.5)+0=-3.5通过此两例,训练学生对法则的理解和直接应用,进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定的符号,再计算的绝对值.变式题1: 填空(口答,并说明理由) 
    (1)(-4)+(-7)=_____(    )      (2)(+4)+(-7)=_____(    ) 
    (3)7+(-4)=_____(     )      (4)4+(-4)=_____(    ) 
    (5)9+(-2)=_____(     )      (6)(-9)+2 =_____(    ) 
    (7)(-9)+0 =_____(     )      (8)0+(-3)=_____(    )变式题2: 今年,我国南方部分地区发生了严重的洪涝灾害。某地水库的水位在某天当中每一次上升了a厘米,第二次上升了b厘米,问: 
    (1)两次一共上升了多少厘米? 
    (2)计算当a、b为下列各数时的值: 
       a= 4 , b=3    a= -3 , b= 7    a= 5 , b= -5    a= 4, b= -1   a = 3 , b=0(3)说出以上运算结果的实际意义 
    四. 总结反思  拓展升华为了使学生对所学知识有一个完整而深刻的印象,利用提问形式,从以下三方面小结。学生先回答,进而教师归纳总结,体现学生为主体,教师为主导的教学思想.(1)本节所学习的主要内容有哪些? 
    (2)有理数的加法法则在应用时应注意的哪些问题?(确定的符号,计算的绝对值两件事 )
    (3)本节课涉及的数学思想方法主要有哪些? 
    五.作业  课本第19页练习1~5题.
    补充:1.计算:
    (1)(-10)+(+6);  (2)(+12)+(-4);   (3)(-5)+(-7);(4)(+6)+(+9);(5)67+(-73);     (6)(-84)+(-59); (7)33+48;       (8)(-56)+37.
    2.计算:
    (1)(-0.9)+(-2.7);      (2)3.8+(-8.4);      (3)(-0.5)+3;(4)3.29+1.78;      (5)7+(-3.04);          (6)(-2.9)+(-0.31);(7)(-9.18)+6.18;    (8)4.23+(-6.77);            (9)(-0.78)+0.
    3*.用号填空:
    (1)如果a>0,b>0,那么a+b ______0;
    (2)如果a<0,b<0,那么a+b ______0;
    (3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
    (4)如果a<0,b>0,|a|>|b|,那么a+b ______0.
    4*.分别根据下列条件,利用|a|与|b|表示a与b的和:
    (1)a>0,b>0;                   (2) a<0,b<0;
    (3)a>0,b<0,|a|>|b|;                 (4)a>0,b<0,|a|<|b|.  

    相关教案

    初中数学沪科版七年级上册1.4 有理数的加减教案:

    这是一份初中数学沪科版七年级上册1.4 有理数的加减教案,共3页。

    数学七年级上册1.5 有理数的加法教案设计:

    这是一份数学七年级上册1.5 有理数的加法教案设计,共4页。教案主要包含了教学重点和难点等内容,欢迎下载使用。

    七年级上册2.4 有理数的加法教学设计:

    这是一份七年级上册2.4 有理数的加法教学设计,共3页。教案主要包含了学习目标,学习方法,学习重难点,学习过程等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map