所属成套资源:历年高考数学真题
2016年山东省高考数学试卷(文科)
展开
这是一份2016年山东省高考数学试卷(文科),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2016年山东省高考数学试卷(文科)
一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项中,只有一个是项符合题目要求的.
1.(5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=( )
A.{2,6} B.{3,6} C.{1,3,4,5} D.{1,2,4,6}
2.(5分)若复数z=,其中i为虚数单位,则=( )
A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i
3.(5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )
A.56 B.60 C.120 D.140
4.(5分)若变量x,y满足,则x2+y2的最大值是( )
A.4 B.9 C.10 D.12
5.(5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )
A.+π B.+π C.+π D.1+π
6.(5分)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
7.(5分)已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是( )
A.内切 B.相交 C.外切 D.相离
8.(5分)△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=( )
A. B. C. D.
9.(5分)已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=( )
A.﹣2 B.1 C.0 D.2
10.(5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是( )
A.y=sinx B.y=lnx C.y=ex D.y=x3
二、填空题:本大题共5小题,每小题5分,共25分.
11.(5分)执行如图的程序框图,若输入n的值为3,则输出的S的值为 .
12.(5分)观察下列等式:
(sin)﹣2+(sin)﹣2=×1×2;
(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;
(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;
(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;
…
照此规律,
(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2= .
13.(5分)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为 .
14.(5分)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是 .
15.(5分)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是 .
三、解答题:本大题共6小题,共75分
16.(12分)某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;
②若xy≥8,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.
(Ⅰ)求小亮获得玩具的概率;
(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
17.(12分)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.
18.(12分)在如图所示的几何体中,D是AC的中点,EF∥DB.
(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;
(Ⅱ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.
19.(12分)已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)令cn=,求数列{cn}的前n项和Tn.
20.(13分)设f(x)=xln x﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求正实数a的取值范围.
21.(14分)已知椭圆 的长轴长为4,焦距为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过动点M(0,m)(m>0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.
(ⅰ)设直线PM,QM的斜率分别为k1,k2,证明为定值;
(ⅱ)求直线AB的斜率的最小值.
2016年山东省高考数学试卷(文科)
参考答案与试题解析
一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项中,只有一个是项符合题目要求的.
1.(5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=( )
A.{2,6} B.{3,6} C.{1,3,4,5} D.{1,2,4,6}
【分析】求出A与B的并集,然后求解补集即可.
【解答】解:集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},
则A∪B={1,3,4,5}.
∁U(A∪B)={2,6}.
故选:A.
【点评】本题考查集合的交、并、补的运算,考查计算能力.
2.(5分)若复数z=,其中i为虚数单位,则=( )
A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i
【分析】根据复数的四则运算先求出z,然后根据共轭复数的定义进行求解即可.
【解答】解:∵z===1+i,
∴=1﹣i,
故选:B.
【点评】本题主要考查复数的计算,根据复数的四则运算以及共轭复数的定义是解决本题的关键.比较基础.
3.(5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )
A.56 B.60 C.120 D.140
【分析】根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.
【解答】解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,
故自习时间不少于22.5小时的频率为:0.7×200=140,
故选:D.
【点评】本题考查的知识点是频率分布直方图,难度不大,属于基础题目.
4.(5分)若变量x,y满足,则x2+y2的最大值是( )
A.4 B.9 C.10 D.12
【分析】由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值.
【解答】解:由约束条件作出可行域如图,
∵A(0,﹣3),C(0,2),
∴|OA|>|OC|,
联立,解得B(3,﹣1).
∵,
∴x2+y2的最大值是10.
故选:C.
【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.
5.(5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )
A.+π B.+π C.+π D.1+π
【分析】由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案.
【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,
半球的直径为棱锥的底面对角线,
由棱锥的底底面棱长为1,可得2R=.
故R=,故半球的体积为:=π,
棱锥的底面面积为:1,高为1,
故棱锥的体积V=,
故组合体的体积为:+π,
故选:C.
【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.
6.(5分)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【分析】直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立.
【解答】解:直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,
反之不成立.
∴“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.
故选:A.
【点评】本题考查了空间位置关系、简易逻辑的判定方法,考查了推理能力,属于基础题.
7.(5分)已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是( )
A.内切 B.相交 C.外切 D.相离
【分析】根据直线与圆相交的弦长公式,求出a的值,结合两圆的位置关系进行判断即可.
【解答】解:圆的标准方程为M:x2+(y﹣a)2=a2 (a>0),
则圆心为(0,a),半径R=a,
圆心到直线x+y=0的距离d=,
∵圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,
∴2=2=2=2,
即=,即a2=4,a=2,
则圆心为M(0,2),半径R=2,
圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1,
则MN==,
∵R+r=3,R﹣r=1,
∴R﹣r<MN<R+r,
即两个圆相交.
故选:B.
【点评】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a的值是解决本题的关键.
8.(5分)△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=( )
A. B. C. D.
【分析】利用余弦定理,建立方程关系得到1﹣cosA=1﹣sinA,即sinA=cosA,进行求解即可.
【解答】解:∵b=c,
∴a2=b2+c2﹣2bccosA=2b2﹣2b2cosA=2b2(1﹣cosA),
∵a2=2b2(1﹣sinA),
∴1﹣cosA=1﹣sinA,
则sinA=cosA,即tanA=1,
即A=,
故选:C.
【点评】本题主要考查解三角形的应用,根据余弦定理建立方程关系是解决本题的关键.
9.(5分)已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=( )
A.﹣2 B.1 C.0 D.2
【分析】求得函数的周期为1,再利用当﹣1≤x≤1时,f(﹣x)=﹣f(x),得到f(1)=﹣f(﹣1),当x<0时,f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出结论.
【解答】解:∵当x>时,f(x+)=f(x﹣),
∴当x>时,f(x+1)=f(x),即周期为1.
∴f(6)=f(1),
∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),
∴f(1)=﹣f(﹣1),
∵当x<0时,f(x)=x3﹣1,
∴f(﹣1)=﹣2,
∴f(1)=﹣f(﹣1)=2,
∴f(6)=2.
故选:D.
【点评】本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题.
10.(5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是( )
A.y=sinx B.y=lnx C.y=ex D.y=x3
【分析】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案.
【解答】解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,
则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,
当y=sinx时,y′=cosx,满足条件;
当y=lnx时,y′=>0恒成立,不满足条件;
当y=ex时,y′=ex>0恒成立,不满足条件;
当y=x3时,y′=3x2>0恒成立,不满足条件;
故选:A.
【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.
二、填空题:本大题共5小题,每小题5分,共25分.
11.(5分)执行如图的程序框图,若输入n的值为3,则输出的S的值为 1 .
【分析】根据程序框图进行模拟计算即可.
【解答】解:若输入n的值为3,
则第一次循环,S=0+﹣1=﹣1,1≥3不成立,
第二次循环,S=﹣1+=﹣1,2≥3不成立,
第三次循环,S=﹣1+﹣=﹣1=2﹣1=1,3≥3成立,
程序终止,输出S=1,
故答案为:1
【点评】本题主要考查程序框图的识别和判断,进行模拟运算是解决本题的关键.
12.(5分)观察下列等式:
(sin)﹣2+(sin)﹣2=×1×2;
(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;
(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;
(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;
…
照此规律,
(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2= n(n+1) .
【分析】由题意可以直接得到答案.
【解答】解:观察下列等式:
(sin)﹣2+(sin)﹣2=×1×2;
(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;
(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;
(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;
…
照此规律(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=×n(n+1),
故答案为:n(n+1)
【点评】本题考查了归纳推理的问题,关键是找到相对应的规律,属于基础题.
13.(5分)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为 ﹣5 .
【分析】根据向量的坐标运算和向量的数量积计算即可.
【解答】解:∵向量=(1,﹣1),=(6,﹣4),
∴t+=(t+6,﹣t﹣4),
∵⊥(t+),
∴•(t+)=t+6+t+4=0,
解得t=﹣5,
故答案为:﹣5.
【点评】本题考查了向量的数量积的运算以及向量垂直的条件,属于基础题.
14.(5分)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是 2 .
【分析】可令x=c,代入双曲线的方程,求得y=±,再由题意设出A,B,C,D的坐标,由2|AB|=3|BC|,可得a,b,c的方程,运用离心率公式计算即可得到所求值.
【解答】解:令x=c,代入双曲线的方程可得y=±b=±,
由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),
由2|AB|=3|BC|,可得
2•=3•2c,即为2b2=3ac,
由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,
解得e=2(负的舍去).
故答案为:2.
【点评】本题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A,B,C,D的坐标是解题的关键,考查运算能力,属于中档题.
15.(5分)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是 (3,+∞) .
【分析】作出函数f(x)=的图象,依题意,可得4m﹣m2<m(m>0),解之即可.
【解答】解:当m>0时,函数f(x)=的图象如下:
∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,
∴y要使得关于x的方程f(x)=b有三个不同的根,
必须4m﹣m2<m(m>0),
即m2>3m(m>0),
解得m>3,
∴m的取值范围是(3,+∞),
故答案为:(3,+∞).
【点评】本题考查根的存在性及根的个数判断,数形结合思想的运用是关键,分析得到4m﹣m2<m是难点,属于中档题.
三、解答题:本大题共6小题,共75分
16.(12分)某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;
②若xy≥8,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.
(Ⅰ)求小亮获得玩具的概率;
(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
【分析】(Ⅰ)确定基本事件的概率,利用古典概型的概率公式求小亮获得玩具的概率;
(Ⅱ)求出小亮获得水杯与获得饮料的概率,即可得出结论.
【解答】解:(Ⅰ)两次记录的数为(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(3,3),(4,2),(4,3),(4,4),共16个,
满足xy≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5个,
∴小亮获得玩具的概率为;
(Ⅱ)满足xy≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6个,∴小亮获得水杯的概率为;
小亮获得饮料的概率为1﹣﹣=,
∴小亮获得水杯大于获得饮料的概率.
【点评】本题考查概率的计算,考查古典概型,确定基本事件的个数是关键.
17.(12分)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.
【分析】(Ⅰ)利用三角恒等变换化简f(x)的解析式,再利用正弦函数的单调性,求得函数的增区间.
(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,从而求得g()的值.
【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x
=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,
令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,
可得函数的增区间为[kπ﹣,kπ+],k∈Z.
(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;
再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,
∴g()=2sin+﹣1=.
【点评】本题主要考查三角恒等变换,正弦函数的单调性,函数y=Asin(ωx+φ)的图象变换规律,求函数的值,属于基础题.
18.(12分)在如图所示的几何体中,D是AC的中点,EF∥DB.
(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;
(Ⅱ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.
【分析】(Ⅰ)由条件利用等腰三角形的性质,证得BD⊥AC,ED⊥AC,再利用直线和平面垂直的判定定理证得AC⊥平面EFBD,从而证得AC⊥FB.
(Ⅱ)再取CF的中点O,利用直线和平面平行的判定定理证明 OG∥平面ABC,OH∥平面ABC,可得平面OGH∥平面ABC,从而证得GH∥平面ABC.
【解答】(Ⅰ)证明:如图所示,∵D是AC的中点,AB=BC,AE=EC,
∴△BAC、△EAC都是等腰三角形,
∴BD⊥AC,ED⊥AC.
∵EF∥DB,∴E、F、B、D四点共面,这样,
AC垂直于平面EFBD内的两条相交直线ED、BD,
∴AC⊥平面EFBD.
显然,FB⊂平面EFBD,∴AC⊥FB.
(Ⅱ)已知G,H分别是EC和FB的中点,再取CF的中点O,
则OG∥EF,又∵EF∥DB,故有OG∥BD,
而BD⊂平面ABC,∴OG∥平面ABC.
同理,OH∥BC,而BC⊂平面ABC,∴OH∥平面ABC.
∵OG∩OH=O,∴平面OGH∥平面ABC,∴GH∥平面ABC.
【点评】本题主要考查直线和平面垂直的判定和性质,直线和平面平行的判定与性质,属于中档题.
19.(12分)已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)令cn=,求数列{cn}的前n项和Tn.
【分析】(Ⅰ)求出数列{an}的通项公式,再求数列{bn}的通项公式;
(Ⅱ)求出数列{cn}的通项,利用错位相减法求数列{cn}的前n项和Tn.
【解答】解:(Ⅰ)Sn=3n2+8n,
∴n≥2时,an=Sn﹣Sn﹣1=6n+5,
n=1时,a1=S1=11,∴an=6n+5;
∵an=bn+bn+1,
∴an﹣1=bn﹣1+bn,
∴an﹣an﹣1=bn+1﹣bn﹣1.
∴2d=6,
∴d=3,
∵a1=b1+b2,
∴11=2b1+3,
∴b1=4,
∴bn=4+3(n﹣1)=3n+1;
(Ⅱ)cn========6(n+1)•2n,
∴Tn=6[2•2+3•22+…+(n+1)•2n]①,
∴2Tn=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,
①﹣②可得
﹣Tn=6[2•2+22+23+…+2n﹣(n+1)•2n+1]
=12+6×﹣6(n+1)•2n+1
=(﹣6n)•2n+1=﹣3n•2n+2,
∴Tn=3n•2n+2.
【点评】本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题.
20.(13分)设f(x)=xln x﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求正实数a的取值范围.
【分析】(1)求出函数的导数,通过讨论a的范围,求出函数g(x)的单调区间即可;
(2)通过讨论a的范围,得到函数f(x)的单调区间,结合函数的极大值,求出a的范围即可.
【解答】解:(1)由f′(x)=ln x﹣2ax+2a,
可得g(x)=ln x﹣2ax+2a,x∈(0,+∞),
所以g′(x)=﹣2a=,
当a≤0,x∈(0,+∞)时,g′(x)>0,函数g(x)单调递增;
当a>0,x∈(0,)时,g′(x)>0,函数g(x)单调递增,
x∈(,+∞)时,g′(x)<0,函数g(x)单调递减.
所以当a≤0时,g(x)的单调增区间为(0,+∞);
当a>0时,g(x)的单调增区间为(0,),单调减区间为(,+∞).…(6分)
(2)由(1)知,f′(1)=0.
①当0<a<时,>1,由(1)知f′(x)在(0,)内单调递增,
可得当x∈(0,1)时,f′(x)<0,当x∈(1,)时,f′(x)>0.
所以f(x)在(0,1)内单调递减,在(1,)内单调递增,
所以f(x)在x=1处取得极小值,不合题意.
②当a=时,=1,f′(x)在(0,1)内单调递增,在(1,+∞)内单调递减,
所以当x∈(0,+∞)时,f′(x)≤0,f(x)单调递减,不合题意.
③当a>时,0<<1,当x∈(,1)时,f′(x)>0,f(x)单调递增,
当x∈(1,+∞)时,f′(x)<0,f(x)单调递减.
所以f(x)在x=1处取极大值,符合题意.
综上可知,正实数a的取值范围为(,+∞).…(12分)
【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.
21.(14分)已知椭圆 的长轴长为4,焦距为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过动点M(0,m)(m>0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.
(ⅰ)设直线PM,QM的斜率分别为k1,k2,证明为定值;
(ⅱ)求直线AB的斜率的最小值.
【分析】(Ⅰ)结合题意分别求出a,c的值,再求出b的值,求出椭圆方程即可;
(Ⅱ)(i)设出P的坐标,表示出直线PM,QM的斜率,作比即可;
(ii)设出A,B的坐标,分别求出PA,QB的方程,联立方程组,求出直线AB的斜率的解析式,根据不等式的性质计算即可.
【解答】解:(Ⅰ)设椭圆的半焦距为c.由题意知,
所以.所以椭圆C的方程为.
(Ⅱ)证明:(ⅰ)设P(x0,y0)(x0>0,y0>0),
由M(0,m),可得P(x0,2m),Q(x0,﹣2m).
所以直线PM的斜率k1==,直线QM的斜率k2==﹣,
此时=﹣3.所以为定值﹣3.
(ⅱ)设A(x1,y1),B(x2,y2).直线PA的方程为y=kx+m,
直线QB的方程为y=﹣3kx+m.
联立 整理得(2k2+1)x2+4mkx+2m2﹣4=0.
由,可得,
所以.同理.
所以,
,
所以.由m>0,x0>0,可知k>0,
所以,等号当且仅当时取得,
此时,即,
所以直线AB 的斜率的最小值为.
【点评】本题考查了椭圆的方程问题,考查直线的斜率以及椭圆的性质,考查函数求最值问题,是一道综合题.
相关试卷
这是一份2018高考文科数学试卷,共2页。
这是一份2022年新疆高考数学试卷(文科)(乙卷),共66页。试卷主要包含了选择题,填空题,解答题,直线的极坐标方程,直线的极坐标方程步骤等内容,欢迎下载使用。
这是一份2016年上海市高考数学试卷(文科),共21页。试卷主要包含了填空题.,选择题.,简答题等内容,欢迎下载使用。