2021年浙江省湖州市中考数学试卷
展开2021年浙江省湖州市中考数学试卷
一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选,多选、借选均不给分。
1.实数﹣2的绝对值是( )
A.﹣2 B.2 C. D.﹣
2.化简的正确结果是( )
A.4 B.±4 C.2 D.±2
3.不等式3x﹣1>5的解集是( )
A.x>2 B.x<2 C.x> D.x<
4.下列事件中,属于不可能事件的是( )
A.经过红绿灯路口,遇到绿灯
B.射击运动员射击一次,命中靶心
C.班里的两名同学,他们的生日是同一天
D.从一个只装有白球和红球的袋中摸球,摸出黄球
5.将如图所示的长方体牛奶包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形可能是( )
A.B.C.D.
6.如图,已知点O是△ABC的外心,∠A=40°,连结BO,CO,则∠BOC的度数是( )
A.60° B.70° C.80° D.90°
7.已知a,b是两个连续整数,a<﹣1<b,则a,b分别是( )
A.﹣2,﹣1 B.﹣1,0 C.0,1 D.1,2
8.如图,已知在△ABC中,∠ABC<90°,AB≠BC,BE是AC边上的中线.按下列步骤作图:①分别以点B,C为圆心,大于线段BC长度一半的长为半径作弧,相交于点M,N;②过点M,N作直线MN,分别交BC,BE于点D,O;③连接CO,DE.则下列结论错误的是( )
A.OB=OC B.∠BOD=∠COD C.DE∥AB D.DB=DE
9.如图,已知在矩形ABCD中,AB=1,BC=,点P是AD边上的一个动点,连结BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是( )
A.π B.π+ C. D.2π
10.已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2﹣x2时,S1<S2;③当|x1﹣2|>|x2﹣2|>1时,S1>S2;④当|x1﹣2|>|x2+2|>1时,S1<S2.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
二、填空题(本题有6小题,每小题4分,共24分)
11.(4分)计算:2×2﹣1= .
12.(4分)如图,已知在Rt△ABC中,∠ACB=90°,AC=1,AB=2,则sinB的值是 .
13.(4分)某商场举办有奖销售活动,每张奖券被抽中的可能性相同,若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是 .
14.(4分)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A,B,C,D,E是正五角星的五个顶点),则图中∠A的度数是 度.
15.(4分)已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定,若抛物线y=ax2+bx+2(a≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则的值是 .
16.由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是 .
三、解答题(本题有8小题,共66分)
17.(6分)计算:x(x+2)+(1+x)(1﹣x).
18.(6分)解分式方程:=1.
19.(6分)如图,已知经过原点的抛物线y=2x2+mx与x轴交于另一点A(2,0).
(1)求m的值和抛物线顶点M的坐标;
(2)求直线AM的解析式.
20.(8分)为了更好地了解党的历史,宣传党的知识,传颂英雄事迹,某校团支部组建了:A.党史宣讲;B.歌曲演唱;C.校刊编撰;D.诗歌创作等四个小组,团支部将各组人数情况制成了统计图表(不完整).
各组参加人数情况统计表
小组类别
A
B
C
D
人数(人)
10
a
15
5
根据统计图表中的信息,解答下列问题:
(1)求a和m的值;
(2)求扇形统计图中D所对应的圆心角度数;
(3)若在某一周各小组平均每人参与活动的时间如下表所示:
小组类别
A
B
C
D
平均用时(小时)
2.5
3
2
3
求这一周四个小组所有成员平均每人参与活动的时间.
21.(8分)如图,已知AB是⊙O的直径,∠ACD是所对的圆周角,∠ACD=30°.
(1)求∠DAB的度数;
(2)过点D作DE⊥AB,垂足为E,DE的延长线交⊙O于点F.若AB=4,求DF的长.
22.(10分)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.
(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;
(2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如下表所示:
购票方式
甲
乙
丙
可游玩景点
A
B
A和B
门票价格
100元/人
80元/人
160元/人
据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.
①若丙种门票价格下降10元,求景区六月份的门票总收入;
②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?
23.(10分)已知在△ACD中,P是CD的中点,B是AD延长线上的一点,连结BC,AP.
(1)如图1,若∠ACB=90°,∠CAD=60°,BD=AC,AP=,求BC的长.
(2)过点D作DE∥AC,交AP延长线于点E,如图2所示,若∠CAD=60°,BD=AC,求证:BC=2AP.
(3)如图3,若∠CAD=45°,是否存在实数m,当BD=mAC时,BC=2AP?若存在,请直接写出m的值;若不存在,请说明理由.
24.(12分)已知在平面直角坐标系xOy中,点A是反比例函数y=(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数y=(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.
(1)如图1,过点B作BF⊥x轴,于点F,连接EF.
①若k=1,求证:四边形AEFO是平行四边形;
②连结BE,若k=4,求△BOE的面积.
(2)如图2,过点E作EP∥AB,交反比例函数y=(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.
2021年浙江省湖州市中考数学试卷
参考答案与试题解析
一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选,多选、借选均不给分。
1.【解答】解:实数﹣2的绝对值是:2.
故选:B.
2.【解答】解:==×=2,
故选:C.
3.【解答】解:不等式3x﹣1>5,
移项合并得:3x>6,
解得:x>2.
故选:A.
4.【解答】解:A、经过红绿灯路口,遇到绿灯是随机事件,故本选项不符合题意;
B、射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;
C、班里的两名同学,他们的生日是同一天是随机事件,故本选项不符合题意;
D、从一个只装有白球和红球的袋中摸球,摸出黄球是不可能事件,故本选项符合题意;
故选:D.
5.【解答】解:该长方体表面展开图可能是选项A.
故选:A.
6.【解答】解:∵点O为△ABC的外心,∠A=40°,
∴∠A=∠BOC,
∴∠BOC=2∠A=80°,
故选:C.
7.【解答】解:∵1<3<4,
∴1<<2,
∴0<﹣1<1,
故选:C.
8.【解答】解:由作法得MN垂直平分BC,
∴OB=OC,BD=CD,OD⊥BC,所以A选项正确;
∴OD平分∠BOC,
∴∠BOD=∠COD,所以B选项正确;
∵AE=CE,DB=DC,
∴DE为△ABC的中位线,
∴DE∥AB,所以C选项正确;
DE=AB,
而BD=BC,
∵AB≠BC,
∴BD≠DE,所以D选项错误.
故选:D.
9.【解答】解:如图,当P与A重合时,点C关于BP的对称点为C',
当P与D重合时,点C关于BP的对称点为C'',
∴点P从点A运动到点D,则线段CC1扫过的区域为:扇形BC'C''和△BCC'',
在△BCD中,∵∠BCD=90°,BC=,CD=1,
∴tan∠DBC=,
∴∠DBC=30°,
∴∠CBC''=60°,
∵BC=BC''
∴△BCC''为等边三角形,
∴S扇形BCC''==π,
作C''F⊥BC于F,
∵△BCC''为等边三角形,
∴BF=,
∴C''F=tan60°×=,
∴S△BCC''=,
∴线段CC1扫过的区域的面积为:π+.
故选:B.
10.【解答】解:不妨假设a>0.
①如图1中,P1,P2满足x1>x2+2,
∵P1P2∥AB,
∴S1=S2,故①错误.
②如图2中,
∵x1<2﹣x2,
∴=1,
∴p1,p2关于点A对称,
∴S1=S2,故②错误,
③∵|x1﹣2|>|x2﹣2|>1,
∴P1,P2在x轴的上方,且P1离x轴的距离比P2离x轴的距离大,
∴S1>S2,故③正确,
④如图1中,P1,P2满足|x1﹣2|>|x2+2|>1,但是S1=S2,故④错误.
故选:A.
二、填空题(本题有6小题,每小题4分,共24分)
11.【解答】解:2×2﹣1=2×=1.
故答案为:1.
12.【解答】解:∵∠ACB=90°,AC=1,AB=2,
∴sinB==.
故答案为:.
13.【解答】解:只抽1张奖券恰好中奖的概率是=.
故答案为:.
14.【解答】解:如图,
∵正五角星中,五边形FGHMN是正五边形,
∴∠GFN=∠FNM==108°,
∴∠AFN=∠ANF=180°﹣∠GFN=180°﹣108°=72°,
∴∠A=180°﹣∠AFN﹣∠ANF=180°﹣72°﹣72°=36°.
故答案是:36.
15.【解答】解:∵△AOM是直角三角形,
∴一定存在两个以A,O为直角顶点的直角三角形,且点M在对称轴上的直角三角形,
∴当以OA为直径的圆与抛物线的对称轴x=﹣相切时,对称轴上存在1个以M为直角顶点的直角三角形,此时对称轴上存在3个不同的点M,使△AOM为直角三角形(如图所示).
观察图象可知,﹣=﹣1或4,
∴=2或﹣8,
故答案为:2或﹣8.
16.【解答】解:如图,设DE=x.
由题意3DE2=1,
∴DE=,
在Rt△CDE中,∠CED=90°,CD=1,
∴EC===,
∴tan∠ECD==,
∴DT=,
∴AT=1﹣,
∵∠ABT=∠TCD,
∴tan∠ABT=tan∠TCD,
∴=,
∴=,
∴AB=﹣1.
故答案为:﹣1.
三、解答题(本题有8小题,共66分)
17.【解答】解:原式=x2+2x+1﹣x2
=2x+1.
18.【解答】解:去分母得:2x﹣1=x+3,
解得:x=4,
当x=4时,x+3≠0,
∴分式方程的解为x=4.
19.【解答】解:(1)∵抛物线y=2x2+mx与x轴交于另一点A(2,0),
∴2×22+2m=0,
∴m=﹣4,
∴y=2x2﹣4x
=2(x﹣1)2﹣2,
∴顶点M的坐标为(1,﹣2),
(2)设直线AM的解析式为y=kx+b(k≠0),
∵图象过A(2,0),M(1,﹣2),
∴,
解得,
∴直线AM的解析式为y=2x﹣4.
20.【解答】解:(1)由题意可知:四个小组所有成员总人数是15÷30%=50(人),
∴a=50﹣10﹣15﹣5=20,
∵m%=10÷50×100%=20%,
∴m=20;
(2)∵5÷50×360°=36°,
∴扇形统计图中D所对应的圆心角度数为36°;
(3)∵=×(10×2.5+20×3+15×2+5×3)=2.6(小时),
∴这一周四个小组所有成员平均每人参与活动的时间是2.6小时.
21.【解答】解:(1)如图,连接BD,
∵∠ACD=30°,
∴∠B=∠ACD=30°,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DAB=90°﹣∠B=60°;
(2)∵∠ADB=90°,∠B=30°,AB=4,
∴AD=AB=2,
∵∠DAB=60°,DE⊥AB,且AB是直径,
∴EF=DE=ADsin60°=,
∴DF=2DE=2.
22.【解答】解:(1)设四月和五月这两个月中该景区游客人数平均每月增长率为x,
由题意,得4(1+x)2=5.76,
解这个方程,得x1=0.2,x2=﹣2.2(舍去),
答:四月和五月这两个月中该景区游客人数平均每月增长率为20%;
(2)①由题意,得
100×(2﹣10×0.06)+80×(3﹣10×0.04)+(160﹣10)×(2+10×0.06+10×0.04)=798(万元).
答:景区六月份的门票总收入为798万元.
②设丙种门票价格降低m元,景区六月份的门票总收入为W万元,
由题意,得
W=100(2﹣0.06m)+80(3﹣0.04m)+(160﹣m)(2+0.06m+0.04m),
化简,得W=﹣0.1(m﹣24)2+817.6,
∵﹣0.1<0,
∴当m=24时,W取最大值,为817.6万元.
答:当丙种门票价格下降24元时,景区六月份的门票总收入有最大值,最大值是817.6万元.
23.【解答】解:(1)∵∠ACB=90°,∠CAD=60°,
∴AB=,
∵BD=AC,
∴AD=AC,
∴△ADC是等边三角形,
∴∠ACD=60°,
∵P是CD的中点,
∴AP⊥CD,
在Rt△APC中,AP=,
∴,
∴,
(2)证明:连接BE,
∵DE∥AC,
∴∠CAP=∠DEP,
在△CPA和△DPE中
,
∴△CPA≌△DPE(AAS),
∴AP=EP=,DE=AC,
∵BD=AC,
∴BD=DE,
又∵DE∥AC,
∴∠BDE=∠CAD=60°,
∴△BDE是等边三角形,
∴BD=BE,∠EBD=60°,
∵BD=AC,
∴AC=BE,
在△CAB和△EBA中
,
∴△CAB≌△EBA(SAS),
∴AE=BC,
∴BC=2AP,
(3)存在这样的m,m=.
理由如下:作DE∥AC交AP延长线于E,连接BE,
由(2)同理可得DE=AC,∠EDB=∠CAD=45°,AE=2AP,
当BD=时,
∴BD=,
∵∠EDB=45°,
作BF⊥DE于F,
∴BD=,
∴DE=DF,
∴点E,F重合,
∴∠BED=90°,
∴∠EBD=∠EDB=45°,
∴BE=DE=AC,
同(2)可证:△CAB≌△EBA(SAS),
∴BC=AE=2AP,
∴存在m=,使得BC=2AP
24.【解答】(1)①证明:设点A的坐标为(a,),则当点k=1时,点B的坐标为(﹣a,﹣),
∴AE=OF=a,
∵AE⊥y轴,
∴AE∥OF,
∴四边形AEFO是平行四边形;
②解:过点B作BD⊥y轴于点D,如图1,
∵AE⊥y轴,
∴AE∥BD,
∴△AEO∽△BDO,
∴,
∴当k=4时,,
即,
∴S△BOE=2S△AOE=1;
(2)不改变.
理由如下:
过点P作PH⊥x轴于点H,PE与x轴交于点G,
设点A的坐标为(a,),点P的坐标为(b,),
则AE=a,OE=,PH=﹣,
∵四边形AEGO是平行四边形,
∴∠EAO=∠EGO,AE=OG,
∵∠EGO=∠PGH,
∴∠EAO=∠PGH,
又∵∠PHG=∠AEO,
∴△AEO∽△GHP,
∴,
∵GH=OH﹣OG=﹣b﹣a,
∴,
∴﹣k=0,
解得,
∵a,b异号,k>0,
∴,
∴S△POE=×OE×(﹣b)=×(﹣b)=﹣,
∴对于确定的实数k,动点A在运动过程中,△POE的面积不会发生变化.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2021/6/18 10:23:10;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557
2019浙江省湖州市中考数学试卷: 这是一份2019浙江省湖州市中考数学试卷,共12页。试卷主要包含了解答题等内容,欢迎下载使用。
2020年浙江省湖州市中考数学试卷(解析版): 这是一份2020年浙江省湖州市中考数学试卷(解析版),共24页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
2020年浙江省湖州市中考数学试卷: 这是一份2020年浙江省湖州市中考数学试卷,共25页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。