人教A版 (2019)选择性必修 第二册5.3 导数在研究函数中的应用第二课时课后测评
展开
这是一份人教A版 (2019)选择性必修 第二册5.3 导数在研究函数中的应用第二课时课后测评,文件包含532第二课时函数的最大小值作业原卷版-上好课2020-2021学年高二数学同步备课系列人教A版2019选择性必修第二册docx、532第二课时函数的最大小值作业解析版-上好课2020-2021学年高二数学同步备课系列人教A版2019选择性必修第二册docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
5.3.2 第二课时 函数的最大(小)值[A级 基础巩固]1.函数f(x)=x4-4x(|x|<1)( )A.有最大值,无最小值B.有最大值,也有最小值C.无最大值,有最小值D.既无最大值,也无最小值解析:选D f′(x)=4x3-4=4(x-1)(x2+x+1).令f′(x)=0,得x=1.又x∈(-1,1)且1∉(-1,1),∴该方程无解,故函数f(x)在(-1,1)上既无极值也无最值.故选D.2.函数f(x)=2+,x∈(0,5]的最小值为( )A.2 B.3C. D.2+解析:选B 由f′(x)=-==0,得x=1,且x∈(0,1)时,f′(x)<0,x∈(1,5]时,f′(x)>0,∴x=1时,f(x)取得极小值且为最小值,故最小值为f(1)=3.3.函数y=的最大值为( )A.e-1 B.eC.e2 D.10解析:选A 令y′===0得x=e.当x>e时,y′<0;当0<x<e时,y′>0,所以y极大值=f(e)=e-1,在定义域内只有一个极值,所以ymax=e-1.4.函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为( )A.[0,1) B.(0,1)C.(-1,1) D.解析:选B ∵f′(x)=3x2-3a,令f′(x)=0,可得a=x2,又∵x∈(0,1),∴0<a<1,故选B.5.若函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( )A.-10 B.-71C.-15 D.-22解析:选B f′(x)=3x2-6x-9=3(x-3)(x+1).由f′(x)=0,得x=3或x=-1.又因为f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.6.函数y=-x(x≥0)的最大值为__________.解析:y′=-1=,令y′=0得x=.∵0<x<时,y′>0;x>时,y′<0.∴x=时,ymax=-=.答案:7.若函数f(x)=x3-3x-a在区间[0,3]上的最大值、最小值分别为m,n,则m-n=________.解析:∵f′(x)=3x2-3,∴当x>1或x<-1时,f′(x)>0;当-1<x<1时,f′(x)<0.∴f(x)在[0,1]上单调递减,在[1,3]上单调递增.∴f(x)min=f(1)=1-3-a=-2-a=n.又∵f(0)=-a,f(3)=18-a,∴f(0)<f(3).∴f(x)max=f(3)=18-a=m,∴m-n=18-a-(-2-a)=20.答案:208.设函数f(x)=x2ex,若当x∈[-2,2]时,不等式f(x)>m恒成立,则实数m的取值范围是________.解析:f′(x)=xex+x2ex=·x(x+2),令f′(x)=0得x=0或x=-2.当x∈[-2,2]时,f′(x),f(x)随x的变化情况如下表:x-2(-2,0)0(0,2)2f′(x)0-0+ f(x) 单调递减极小值0单调递增 ∴当x=0时,f(x)min=f(0)=0,要使f(x)>m对x∈[-2,2]恒成立,只需m<f(x)min,∴m<0.答案:(-∞,0)9.设函数f(x)=ex-x2-x.(1)若k=0,求f(x)的最小值;(2)若k=1,讨论函数f(x)的单调性.解:(1)k=0时,f(x)=ex-x,f′(x)=ex-1.当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0,所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,故f(x)的最小值为f(0)=1.(2)若k=1,则f(x)=ex-x2-x,定义域为R.所以f′(x)=ex-x-1,令g(x)=ex-x-1,则g′(x)=ex-1,由g′(x)≥0得x≥0,所以g(x)在[0,+∞)上单调递增,由g′(x)<0得x<0,所以g(x)在(-∞,0)上单调递减,所以g(x)min=g(0)=0,即f′(x)min=0,故f′(x)≥0.所以f(x)在R上单调递增.10.已知函数f(x)=x3+ax2+bx+5,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.(1)求a,b的值;(2)求y=f(x)在[-3,1]上的最大值.解:(1)依题意可知点P(1,f(1))为切点,代入切线方程y=3x+1可得,f(1)=3×1+1=4,∴f(1)=1+a+b+5=4,即a+b=-2,又由f(x)=x3+ax2+bx+5得,f′(x)=3x2+2ax+b,而由切线y=3x+1的斜率可知f′(1)=3,∴3+2a+b=3,即2a+b=0,由解得∴a=2,b=-4.(2)由(1)知f(x)=x3+2x2-4x+5,f′(x)=3x2+4x-4=(3x-2)(x+2),令f′(x)=0,得x=或x=-2.当x变化时,f(x),f′(x)的变化情况如下表:x-3(-3,-2)-21f′(x) +0-0+ f(x)8单调递增极大值单调递减极小值单调递增4∴f(x)的极大值为f(-2)=13,极小值为f=,又∵f(-3)=8,f(1)=4,∴f(x)在[-3,1]上的最大值为13.[B级 综合运用]11.设直线x=t与函数f(x)=x2,g(x)=ln x的图象分别交于点M,N,则当|MN|达到最小值时t的值为( )A.1 B.C. D.解析:选D 因为f(x)的图象始终在g(x)的上方,所以|MN|=f(x)-g(x)=x2-ln x,设h(x)=x2-ln x,则h′(x)=2x-=,令h′(x)==0,得x=或x=-(舍去),所以h(x)在上单调递减,在上单调递增,所以当x=时有最小值,故t=.12.(多选)设函数f(x)=xln x,g(x)=,则下列命题正确的是( )A.不等式g(x)>0的解集为B.函数g(x)在(0,e)上单调递增,在(e,+∞)上单调递减C.当x1>x2>0时,>f(x1)-f(x2)恒成立,则m≥1D.若函数F(x)=f(x)-ax2有两个极值点,则实数a∈(0,1)解析:选AC f(x)=xln x的导函数为f′(x)=1+ln x,则g(x)==,g′(x)=,对于A,g(x)>0,即>0,解得x>,故A正确;对于B,g′(x)=,当x∈(0,1)时,g′(x)>0,g(x)在(0,1)上单调递增,故B错误;对于C,>f(x1)-f(x2)可化为f(x2)-x>f(x1)-x.设φ(x)=f(x)-x2,又x1>x2>0,∴φ(x)在(0,+∞)上单调递减,∴φ′(x)=1+ln x-mx≤0在(0,+∞)上恒成立,即m≥在(0,+∞)上恒成立.又g(x)=在(0,1)上单调递增,在(1,+∞)上单调递减,∴g(x)在x=1处取得最大值,g(1)=1,∴m≥1,故C正确;对于D,若函数F(x)=f(x)-ax2有两个极值点,则f′(x)=1+ln x-2ax有两个零点,即1+ln x-2ax=0有两个不等实根.2a=,又g(x)=在(0,1)上单调递增,在(1,+∞)上单调递减,g(1)=1,x→+∞时,g(x)→0,即2a∈(0,1),a∈,故D错误.故选A、C.13.已知函数y=-x2-2x+3在区间[a,2]上的最大值为,则a=________.解析:y′=-2x-2,令y′=0,得x=-1,∴函数在(-∞,-1)上单调递增,在(-1,+∞)上单调递减.若a>-1,则最大值为f(a)=-a2-2a+3=,解得a=-;若a≤-1,则最大值为f(-1)=-1+2+3=4≠.综上知,a=-.答案:-14.已知函数f(x)=.(1)求f(x)在点(1,0)处的切线方程;(2)求函数f(x)在[1,t]上的最大值.解:f(x)的定义域为(0,+∞),f(x)的导数f′(x)=.(1)f′(1)=1,所以切线方程为y=x-1.(2)令f′(x)==0,解得x=e.当x∈(0,e)时,f′(x)>0,f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,当1<t<e时,f(x)在[1,t]上单调递增,f(x)max=f(t)=,当t≥e时,f(x)在[1,e]上单调递增,在[e,t]上单调递减,f(x)max=f(e)=,f(x)max= [C级 拓展探究]15.已知函数f(x)=ln x+.(1)当a<0时,求函数f(x)的单调区间;(2)若函数f(x)在[1,e]上的最小值是,求a的值.解:函数f(x)=ln x+的定义域为(0,+∞),f′(x)=-=,(1)∵a<0,∴f′(x)>0,故函数在其定义域(0,+∞)上单调递增.(2)x∈[1,e]时,分如下情况讨论:①当a<1时,f′(x)>0,函数f(x)单调递增,其最小值为f(1)=a<1,这与函数在[1,e]上的最小值是相矛盾;②当a=1时,函数f(x)在[1,e]上单调递增,其最小值为f(1)=1,同样与最小值是相矛盾;③当1<a<e时,函数f(x)在[1,a)上有f′(x)<0,f(x)单调递减,在(a,e]上有f′(x)>0,f(x)单调递增,所以,函数f(x)的最小值为f(a)=ln a+1,由ln a+1=,得a=.④当a=e时,函数f(x)在[1,e]上有f′(x)<0,f(x)单调递减,其最小值为f(e)=2,这与最小值是相矛盾;⑤当a>e时,显然函数f(x)在[1,e]上单调递减,其最小值为f(e)=1+>2,仍与最小值是相矛盾;综上所述,a的值为.
相关试卷
这是一份数学选择性必修 第二册5.2 导数的运算同步测试题,文件包含521基本初等函数的导数解析版作业-上好课2020-2021学年高二数学同步备课系列人教A版2019选择性必修第二册docx、521基本初等函数的导数原卷版作业-上好课2020-2021学年高二数学同步备课系列人教A版2019选择性必修第二册docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第二册5.3 导数在研究函数中的应用优秀巩固练习,共28页。试卷主要包含了0分),【答案】A,【答案】D,【答案】B,【答案】C等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第二册5.2 导数的运算同步测试题,文件包含523简单复合函数的导数原卷版作业-上好课2020-2021学年高二数学同步备课系列人教A版2019选择性必修第二册docx、523简单复合函数的导数解析版作业-上好课2020-2021学年高二数学同步备课系列人教A版2019选择性必修第二册docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。