所属成套资源:2021年全国中考数学真题汇编(含解析)
2021年全国中考数学真题分类汇编--三角形 全等三角形
展开
这是一份2021年全国中考数学真题分类汇编--三角形 全等三角形,共24页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2021全国中考真题分类汇编(三角形)
----全等三角形
一、选择题
1. (2021•陕西省)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.CD⊥BC,若AC=6cm,则线段CE的长度是( )
A.6cm B.7cm C.6cm D.8cm
2. (2021•江苏省盐城市)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别在取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )
A.SAS B.ASA C.AAS D.SSS
3. (2021•重庆市B)如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )
A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D
4. (2021•重庆市A)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不等判断△ABC≌△DEF的是( )
A. AB=DE B. ∠A=∠D C. AC=DF D. AC∥FD
二.填空题
1. (2021•湖南省常德市)如图.在中,,平分,于E,若,则的长为________.
2. (2021•长沙市)如图,在中,,平分交于点,,垂足为,若,,则长为______.
3. (2021•山东省济宁市)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件 ,使△ABC≌△ADC.
4. (2021•齐齐哈尔市)如图,,,要使,应添加的条件是_________.(只需写出一个条件即可)
三、解答题
1. (2021•湖南省衡阳市)如图,点A、B、D、E在同一条直线上,AB=DE,AC∥DF,BC∥EF.求证:△ABC≌△DEF.
2. (2021•长沙市)人教版初中数学教科书八年级上册第35-36页告诉我们作一个三角形与已知三角形全等的方法:
已知:.
求作:,使得≌.
作法:如图.
(1)画;
(2)分别以点,为圆心,线段,长为半径画弧,两弧相交于点;
(3)连接线段,,则即为所求作的三角形.
请你根据以上材料完成下列问题:
(1)完成下面证明过程(将正确答案填在相应的横线上):
证明:由作图可知,在和中,
∴≌______.
(2)这种作一个三角形与已知三角形全等的方法的依据是______.(填序号)
①AAS;②ASA;③SAS;④SSS
3. (2021•陕西省)如图,BD∥AC,BD=BC,且BE=AC.求证:∠D=∠ABC.
4. (2021•四川省乐山市)如图,已知,,与相交于点,求证:.
5. (2021•泸州市) 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE
6. (2021•四川省南充市)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.求证:AF=BE.
7. (2021•浙江省杭州)在①AD=AE,②∠ABE=∠ACD,③FB=FC这三个条件中选择其中一个,并完成问题的解答.
问题:如图,在△ABC中,∠ABC=∠ACB(不与点A,点B重合),点E在AC边上(不与点A,点C重合),连接BE,BE与CD相交于点F.若 ①AD=AE(②∠ABE=∠ACD或③FB=FC) ,求证:BE=CD.
注:如果选择多个条件分别作答,按第一个解答计分.
8. (2021•浙江省台州)如图,在四边形ABCD中,AB=AD=20,BC=DC=10
(1)求证:△ABC≌△ADC;
(2)当∠BCA=45°时,求∠BAD的度数.
9. (2021•福建省)如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C.
10. .(2021•云南省)如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.
11. (2021•吉林省)如图,点D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.
12. (2021•江苏省无锡市)已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.
求证:(1)△ABO≌△DCO;
(2)∠OBC=∠OCB.
13. (2021•贵州省铜仁市)如图,交于点,在与中,有下列三个条件:①,②,③.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法,若多选的只按第一种选法评分,后面的选法不给分)
(1)你选的条件为____________、____________,结论为____________;
(2)证明你的结论.
14. (2021•湖北省黄石市)如图,是的边上一点,,交于点,.
(1)求证:≌;
(2)若,,求的长.
答案
一、选择题
1. (2021•陕西省)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.CD⊥BC,若AC=6cm,则线段CE的长度是( )
A.6cm B.7cm C.6cm D.8cm
【分析】过B作BM⊥AC于M,过D作DN⊥CE于N,由等腰三角形的性质得到AM=CM=3,CN=EN,根据全等三角形判定证得△BCM≌△CDN,得到BM=CN,在Rt△BCM中,根据勾股定理求出BM=4,进而求出.
【解答】解:由题意知,AB=BC=CD=DE=5cm,
过B作BM⊥AC于M,过D作DN⊥CE于N,
则∠BMC=∠CND=90°,AM=CM=×5=3,
∵CD⊥BC,
∴∠BCD=90°,
∴∠BCM+∠CBM=∠BCM+∠DCN=90°,
∴∠CBM=∠DCN,
在△BCM和△CDN中,
,
∴△BCM≌△CDN(AAS),
∴BM=CN,
在Rt△BCM中,
∵BM=5,CM=2,
∴BM===4,
∴CN=4,
∴CE=4CN=2×4=8,
故选:D.
2. (2021•江苏省盐城市)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别在取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )
A.SAS B.ASA C.AAS D.SSS
【分析】根据全等三角形的判定定理SSS推出△COM≌△DOM,根据全等三角形的性质得出∠COM=∠DOM,根据角平分线的定义得出答案即可.
【解答】解:在△COM和△DOM中
,
所以△COM≌△DOM(SSS),
所以∠COM=∠DOM,
即OM是∠AOB的平分线,
故选:D.
3. (2021•重庆市B)如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )
A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D
【分析】根据证明三角形全等的条件AAS,SAS,ASA,SSS逐一验证选项即可.
【解答】解:在△ABC和△DCB中,
∵∠ACB=∠DBC,BC=BC,
A:当∠ABC=∠DCB时,△ABC≌△DCB(ASA),
故A能证明;
B:当AB=DC时,不能证明两三角形全等,
故B不能证明;
C:当AC=DB时,△ABC≌△DCB(SAS),
故C能证明;
D:当∠A=∠D时,△ABC≌△DCB(AAS),
故D能证明;
故选:B.
4. (2021•重庆市A)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不等判断△ABC≌△DEF的是( )
A. AB=DE B. ∠A=∠D C. AC=DF D. AC∥FD
【答案】C
【解析】
【分析】根据全等三角形的判定与性质逐一分析即可解题.
【详解】解:BF=EC,
A. 添加一个条件AB=DE,
又
故A不符合题意;
B. 添加一个条件∠A=∠D
又
故B不符合题意;
C. 添加一个条件AC=DF ,不能判断△ABC≌△DEF ,故C符合题意;
D. 添加一个条件AC∥FD
又
故D不符合题意,
故选:C.
二.填空题
1. (2021•湖南省常德市)如图.在中,,平分,于E,若,则的长为________.
【答案】
【解析】
【分析】证明三角形全等,再利用勾股定理即可求出.
【详解】解:由题意:平分,于,
,,
又为公共边,
,
,
在中,,由勾股定理得:
,
故答案是:.
2. (2021•长沙市)如图,在中,,平分交于点,,垂足为,若,,则长为______.
【答案】
3. (2021•山东省济宁市)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件 AD=AB(答案不唯一) ,使△ABC≌△ADC.
【分析】本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.
【解答】解:添加的条件是AD=AB,
理由是:在△ABC和△ADC中
,
∴△ABC≌△ADC(SAS),
故答案为:AD=AB(答案不唯一).
4. (2021•齐齐哈尔市)如图,,,要使,应添加的条件是_________.(只需写出一个条件即可)
【答案】或或(只需写出一个条件即可,正确即得分)
【解析】
【分析】根据已知的∠1=∠2,可知∠BAC=∠EAD,两个三角形已经具备一边一角的条件,再根据全等三角形的判定方法,添加一边或一角的条件即可.
【详解】解:如图所所示,
∵∠1=∠2,
∴∠1+∠BAD=∠2+∠BAD.
∴∠BAC=∠EAD.
(1)当∠B=∠E时,
(2)当∠C=∠D时,
(3)当AB=AE时,
故答案为:∠B=∠E或∠C=∠D或AB=AE
三、解答题
1. (2021•湖南省衡阳市)如图,点A、B、D、E在同一条直线上,AB=DE,AC∥DF,BC∥EF.求证:△ABC≌△DEF.
【分析】根据题目已知条件利用ASA即可求出△ABC≌△DEF.
【解答】证明:∵AC∥DF,
∴∠CAB=∠FDE(两直线平行,同位角相等),
又∵BC∥EF,
∴∠CBA=∠FED(两直线平行,同位角相等),
在△ABC和△DEF中,
,
∴△ABC≌△DEF(ASA).
2. (2021•长沙市)人教版初中数学教科书八年级上册第35-36页告诉我们作一个三角形与已知三角形全等的方法:
已知:.
求作:,使得≌.
作法:如图.
(1)画;
(2)分别以点,为圆心,线段,长为半径画弧,两弧相交于点;
(3)连接线段,,则即为所求作的三角形.
请你根据以上材料完成下列问题:
(1)完成下面证明过程(将正确答案填在相应的横线上):
证明:由作图可知,在和中,
∴≌______.
(2)这种作一个三角形与已知三角形全等的方法的依据是______.(填序号)
①AAS;②ASA;③SAS;④SSS
【答案】(1);(2)④.
3. (2021•陕西省)如图,BD∥AC,BD=BC,且BE=AC.求证:∠D=∠ABC.
【分析】先根据平行线的性质得到∠ACB=∠EBD,然后根据“SAS”可判断△ABC≌△EDB,从而根据全等三角形的性质得到结论.
【解答】证明:∵BD∥AC,
∴∠ACB=∠EBD,
在△ABC和△EDB中,
,
∴△ABC≌△EDB(SAS),
∴∠ABC=∠D.
4. (2021•四川省乐山市)如图,已知,,与相交于点,求证:.
【答案】证明见解析
【解析】
【分析】根据全等三角形的性质,通过证明,得,结合等腰三角形的性质,即可得到答案.
【详解】∵,
∴(AAS),
∴,
∴.
5. (2021•泸州市) 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE
【答案】证明见详解.
【解析】
【分析】根据“ASA”证明△ABE≌△ACD,然后根据全等三角形的对应边相等即可得到结论.
【详解】证明:在△ABE和△ACD中,
∵,
△ABE≌△ACD (ASA),
∴AE=AD,
∴BD=AB–AD=AC-AE=CE.
6. (2021•四川省南充市)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.求证:AF=BE.
【分析】根据AAS证明△BAE≌△ACF,再根据全等三角形的对应边相等即可得解.
【解答】证明:∵∠BAC=90°,
∴∠BAE+∠FAC=90°,
∵BE⊥AD,CF⊥AD,
∴∠BEA=∠AFC=90°,
∴∠BAE+∠EBA=90°,
∴∠EBA=∠FAC,
在△ACF和△BAE中,
,
∴△ACF≌△BAE(AAS),
∴AF=BE.
7. (2021•浙江省杭州)在①AD=AE,②∠ABE=∠ACD,③FB=FC这三个条件中选择其中一个,并完成问题的解答.
问题:如图,在△ABC中,∠ABC=∠ACB(不与点A,点B重合),点E在AC边上(不与点A,点C重合),连接BE,BE与CD相交于点F.若 ①AD=AE(②∠ABE=∠ACD或③FB=FC) ,求证:BE=CD.
注:如果选择多个条件分别作答,按第一个解答计分.
【分析】若选择条件①,利用∠ABC=∠ACB得到AB=AC,则可根据“SAS”可判断△ABE≌△ACD,从而得到BE=CD;
选择条件②,利用∠ABC=∠ACB得到AB=AC,则可根据“ASA”可判断△ABE≌△ACD,从而得到BE=CD;
选择条件③,利用∠ABC=∠ACB得到AB=AC,再证明∠ABE=∠ACD,则可根据“ASA”可判断△ABE≌△ACD,从而得到BE=CD.
【解答】证明:选择条件①的证明为:
∵∠ABC=∠ACB,
∴AB=AC,
在△ABE和△ACD中,
,
∴△ABE≌△ACD(SAS),
∴BE=CD;
选择条件②的证明为:
∵∠ABC=∠ACB,
∴AB=AC,
在△ABE和△ACD中,
,
∴△ABE≌△ACD(ASA),
∴BE=CD;
选择条件③的证明为:
∵∠ABC=∠ACB,
∴AB=AC,
∵FB=FC,
∴∠FBC=∠FCB,
∴∠ABC﹣∠FBC=∠ACB﹣∠FCB,
即∠ABE=∠ACD,
在△ABE和△ACD中,
,
∴△ABE≌△ACD(ASA),
∴BE=CD.
故答案为①AD=AE(②∠ABE=∠ACD或③FB=FC)
8. (2021•浙江省台州)如图,在四边形ABCD中,AB=AD=20,BC=DC=10
(1)求证:△ABC≌△ADC;
(2)当∠BCA=45°时,求∠BAD的度数.
【答案】(1)见详解;(2)60°
【解析】
【分析】(1)通过SSS证明△ABC≌△ADC,即可;
(2)先证明AC垂直平分BD,从而得是等腰直角三角形,求出BO= 10,从而得BD=20,是等边三角形,进而即可求解.
【详解】(1)证明:在△ABC和△ADC中,
∵
∴△ABC≌△ADC(SSS),
(2)连接BD,交AC于点O,
∵△ABC≌△ADC,
∴AB=AD,BC=DC,
∴AC垂直平分BD,即:∠AOB=∠BOC=90°,
又∵∠BCA=45°,
∴是等腰直角三角形,
∴BO=BC÷=10÷=10,
∴BD=2BO=20,
∵AB=AD=20,
∴是等边三角形,
∴∠BAD=60°.
9. (2021•福建省)如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C.
【分析】由得出,由SAS证明,得出对应角相等即可.
【详解】证明:∵,
∴.
在和中,
∴,
∴.
10. .(2021•云南省)如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.
11. (2021•吉林省)如图,点D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.
12. (2021•江苏省无锡市)已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.
求证:(1)△ABO≌△DCO;
(2)∠OBC=∠OCB.
【分析】(1)由已知条件,结合对顶角相的可以利用AAS判定△ABO≌△DCO;
(2)由等边对等角得结论.
【解答】证明:(1)∵∠AOB=∠COD,
∠ABO=∠DCO,
AB=DC,
在△ABO和△DCO中,
,
∴△ABO≌△DCO(AAS);
(2)由(1)知,△ABO≌△DCO,
∴OB=OC
∴∠OBC=∠OCB.
13. (2021•贵州省铜仁市)如图,交于点,在与中,有下列三个条件:①,②,③.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法,若多选的只按第一种选法评分,后面的选法不给分)
(1)你选的条件为____________、____________,结论为____________;
(2)证明你的结论.
【答案】(1),,;(2)见解析
14. (2021•湖北省黄石市)如图,是的边上一点,,交于点,.
(1)求证:≌;
(2)若,,求的长.
【答案】(1)证明见详解;(2)1.
【解析】
【分析】(1)根据证明即可;
(2)根据(1)可得,即由,根据求解即可.
【详解】(1)证明:,
,
在和中,
;
(2)由(1)得
∴.
相关试卷
这是一份2023年全国各地中考数学真题分类汇编之三角形及全等三角形(含解析),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学真题分类汇编——专题15 三角形及全等三角形(全国通用),文件包含专题15三角形及全等三角形解析版docx、专题15三角形及全等三角形原卷版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
这是一份2021年全国中考数学真题分类汇编:三角形(无答案),共17页。