所属成套资源:2021年全国中考数学真题汇编(含解析)
2021全国中考数学真题分类汇编--可化为整式方程的分式方程练习
展开
这是一份2021全国中考数学真题分类汇编--可化为整式方程的分式方程练习,共19页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2021全国中考真题分类汇编(方程与不等式)
----可化为整式方程的分式方程
一、选择题
1. (2021•怀化市)定义a⊗b=2a+,则方程3⊗x=4⊗2的解为( )
A.x= B.x= C.x= D.x=
2. (2021•四川省成都市)分式方程+=1的解为( )
A.x=2 B.x=﹣2 C.x=1 D.x=﹣1
3. (2021•浙江省嘉兴市)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为( )
A.﹣=20 B.﹣=20
C.﹣=20 D.﹣=20
4. (2021•湖北省十堰市)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是( )
A. B.
C. D.
5. (2021•黑龙江省龙东地区)已知关于的分式方程的解为非负数,则的取值范围是( )
A. B. 且
C. D. 且
6. (2021•绥化市)根据市场需求,某药厂要加速生产一批药品,现在平均每天生产药品比原计划平均每天多生产500箱,现在生产6000箱药品所需时间与原计划生产4500箱药品所需时间相同,那么原计划平均每天生产多少箱药品?设原计划平均每天可生产箱药品,则下面所列方程正确的是( )
A. B.
C. D.
7. (2021•广西贺州市)若关于的分式方程有增根,则的值为( )
A. 2 B. 3 C. 4 D. 5
二.填空题
1. (2021•湖南省常德市)分式方程的解为__________.
2. (2021•湖南省衡阳市)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树 棵.
3. (2021•宿迁市)方程的解是_____________.
4. (2021•湖北省荆州市).若关于x的方程+=3的解是正数,则m的取值范围为 .
5. (2021•四川省达州市)若分式方程﹣4=的解为整数 .
6. (2021•辽宁省本溪市)为了弘扬我国书法艺术,培养学生良好的书写能力,某校举办了书法比赛,学校准备为获奖同学颁奖.在购买奖品时发现,A种奖品的单价比B种奖品的单价多10元,用300元购买A种奖品的数量与用240元购买B种奖品的数量相同.设B种奖品的单价是x元,则可列分式方程为________.
三、解答题
1. (2021•浙江省湖州市)解分式方程:.
2.(2021•江苏省连云港)解方程:.
3. (2021•江苏省南京市)解方程.
4. (2021•湖北省江汉油田)解分式方程:.
5.(2021•岳阳市)星期天,小明与妈妈到离家的洞庭湖博物馆参观.小明从家骑自行车先走,后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.
6. (2021•江苏省扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天,问原先每天生产多少万剂疫苗?
7. (2021•江西省)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.
(1)求这种商品的单价;
(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是 48 元/件,乙两次购买这种商品的平均单价是 50 元/件.
(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同 金额 加油更合算(填“金额”或“油量”).
8. (2021•山东省泰安市)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.
(1)求该厂当前参加生产的工人有多少人?
(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?
9. (2021•山西省中考)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.
10. (2021•四川省自贡市). 随着我国科技事业不断发展,国产无人机大量进入快递行业.现有A,B两种型号的无人机都被用来运送快件,A型机比B型机平均每小时多运送20件,A型机运送700件所用时间与B型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?
11. (2021•广西玉林市)某市垃圾处理厂利用焚烧垃圾产生的热能发电,有,两个焚烧妒,每个焚烧炉每天焚烧垃圾均为100吨,每焚烧一吨垃圾,焚烧炉比焚烧炉多发电50度,,焚烧炉每天共发电55000度.
(1)求焚烧一吨垃圾,焚烧炉和焚烧炉各发电多少度?
(2)若经过改进工艺,与改进工艺之前相比每焚烧一吨垃圾,焚烧炉和焚烧炉的发电量分别增加%和%,则,焚烧炉每天共发电至少增加%,求的最小值.
12. (2021•山东省威海市) 六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件.
(1)求第一次每件的进价为多少元?
(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?
13. (2021•内蒙古包头市)小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.
(1)求小刚跑步的平均速度;
(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.
14. (2021•吉林省长春市)为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同,求每千克有机大米的售价为多少元?
答案
一、选择题
1. (2021•怀化市)定义a⊗b=2a+,则方程3⊗x=4⊗2的解为( )
A.x= B.x= C.x= D.x=
【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.
【解答】解:根据题中的新定义得:
3⊗x=2×3+,
4⊗2=2×4+,
∵3⊗x=4⊗2,
∴2×3+=2×4+,
解得:x=,
经检验,x=是分式方程的根.
故选:B.
2. (2021•四川省成都市)分式方程+=1的解为( )
A.x=2 B.x=﹣2 C.x=1 D.x=﹣1
【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【解答】解:分式方程整理得:﹣=1,
去分母得:2﹣x﹣1=x﹣3,
解得:x=2,
检验:当x=2时,x﹣3≠0,
∴分式方程的解为x=2.
故选:A.
3. (2021•浙江省嘉兴市)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为( )
A.﹣=20 B.﹣=20
C.﹣=20 D.﹣=20
【分析】若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据等量关系“缤纷棒比荧光棒少20根”可列方程即可.
【解答】解:若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,
根据题意可得:﹣=20.
故选:B.
4. (2021•湖北省十堰市)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是( )
A. B.
C. D.
【答案】B
【解析】
【分析】设现在每天生产x台,则原来可生产(x−50)台.根据现在生产400台机器的时间与原计划生产450台机器的时间少1天,列出方程即可.
【详解】解:设现在每天生产x台,则原来可生产(x−50)台.
依题意得:.
故选:B.
5. (2021•黑龙江省龙东地区)已知关于的分式方程的解为非负数,则的取值范围是( )
A. B. 且 C. D. 且
【答案】B
【解析】
【分析】根据题意先求出分式方程的解,然后根据方程的解为非负数可进行求解.
【详解】解:由关于分式方程可得:,且,
∵方程的解为非负数,
∴,且,
解得:且,
故选B.
6. (2021•绥化市)根据市场需求,某药厂要加速生产一批药品,现在平均每天生产药品比原计划平均每天多生产500箱,现在生产6000箱药品所需时间与原计划生产4500箱药品所需时间相同,那么原计划平均每天生产多少箱药品?设原计划平均每天可生产箱药品,则下面所列方程正确的是( )
A. B.
C. D.
【答案】D
【解析】
【分析】设原计划平均每天可生产箱药品,则实际每天生产箱药品,再根据“生产6000箱药品所需时间与原计划生产4500箱药品所需时间相同”建立方程求解即可.
【详解】解:设原计划平均每天可生产箱药品,则实际每天生产箱药品,
原计划生产4500箱所需要的时间为:,
现在生产6000箱所需要的时间为:,
由题意得:;
故选:D
7. (2021•广西贺州市)若关于的分式方程有增根,则的值为( )
A. 2 B. 3 C. 4 D. 5
【答案】D
【解析】
【分析】根据分式方程有增根可求出,方程去分母后将代入求解即可.
【详解】解:∵分式方程有增根,
∴,
去分母,得,
将代入,得,
解得.
故选:D.
二.填空题
1. (2021•湖南省常德市)分式方程的解为__________.
【答案】
【解析】
【分析】直接利用通分,移项、去分母、求出后,再检验即可.
【详解】解:
通分得:,
移项得:,
,
解得:,
经检验,时,,
是分式方程的解,
故答案是:.
2. (2021•湖南省衡阳市)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树 500 棵.
【分析】设原计划每天植树x棵,则实际每天植树(1+25%)x棵,根据工作时间=工作总量÷工作效率,结合实际比原计划提前3天完成任务,即可得出关于x的分式方程,解之经检验后即可得出x的值,再将其代入(1+25%)x中即可求出结论.
【解答】解:设原计划每天植树x棵,则实际每天植树(1+25%)x棵,
依题意得:﹣=3,
解得:x=400,
经检验,x=400是原方程的解,且符合题意,
∴(1+25%)x=500.
故答案为:500.
3. (2021•宿迁市)方程的解是_____________.
【答案】,
【解析】
【分析】先把两边同时乘以,去分母后整理为,进而即可求得方程的解.
【详解】解:,
两边同时乘以,得
,
整理得:
解得:,,
经检验,,是原方程的解,
故答案为:,.
4. (2021•湖北省荆州市).若关于x的方程+=3的解是正数,则m的取值范围为 m>﹣7且m≠﹣3 .
【分析】先解分式方程,根据分式方程的解为正数和分式方程无意义的情况,即可得出m的取值范围.
【解答】解:原方程左右两边同时乘以(x﹣2),得:2x+m﹣(x﹣1)=3(x﹣2),
解得:x=,
∵原方程的解为正数且x≠2,
∴,
解得:m>﹣7且m≠﹣3,
故答案为:m>﹣7且m≠﹣3.
5. (2021•四川省达州市)若分式方程﹣4=的解为整数 ±1 .
【分析】先将分式方程化简为整式方程,再用含a代数式表示x,由方程的解为整数及x=±1为增根可求a.
【解答】解:方程两边同时乘以(x+1)(x﹣1)得(4x﹣a)(x+1)﹣4(x+8)(x﹣1)=(x﹣1)(﹣3x+a),
整理得﹣2ax=﹣4,
整理得ax=4,
∵x,a为整数,
∴a=±1或a=±2,
∵x=±2为增根,
∴a≠±2,
∴a=±1.
故答案为:±6
6. (2021•辽宁省本溪市)为了弘扬我国书法艺术,培养学生良好的书写能力,某校举办了书法比赛,学校准备为获奖同学颁奖.在购买奖品时发现,A种奖品的单价比B种奖品的单价多10元,用300元购买A种奖品的数量与用240元购买B种奖品的数量相同.设B种奖品的单价是x元,则可列分式方程为________.
【答案】
【解析】
【分析】设B种奖品的单价为x元,则A种奖品的单价为(x+10)元,利用数量=总价÷单价,结合用300元购买A种奖品的件数与用240元购买B种奖品的件数相同,即可得出关于x的分式方程.
【详解】解:设B种奖品的单价为x元,则A种奖品的单价为(x+10)元,
依题意得:,
故答案为:
三、解答题
1. (2021•浙江省湖州市)解分式方程:.
【答案】
【解析】解:
.
经检验,是原方程的解.
2.(2021•江苏省连云港)解方程:.
【答案】无解
【解析】
【分析】将分式去分母,然后再解方程即可.
【详解】解:去分母得:
整理得,解得,
经检验,是分式方程的增根,
故此方程无解.
3. (2021•江苏省南京市)解方程.
【答案】
【解析】
【分析】先将方程两边同时乘以,化为整式方程后解整式方程再检验即可.
【详解】解:,
,
,
,
检验:将代入中得,,
∴是该分式方程的解.
4. (2021•湖北省江汉油田)解分式方程:.
,
方程两边同乘以得:,
移项、合并同类项得:,
系数化为1得:,
经检验,是原分式方程的解,
故方程的解为.
5.(2021•岳阳市)星期天,小明与妈妈到离家的洞庭湖博物馆参观.小明从家骑自行车先走,后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.
【答案】妈妈开车的平均速度是48km/h.
6. (2021•江苏省扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天,问原先每天生产多少万剂疫苗?
【答案】40万
【解析】
【分析】设原先每天生产x万剂疫苗,根据现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天可得方程,解之即可.
【详解】解:设原先每天生产x万剂疫苗,
由题意可得:,
解得:x=40,
经检验:x=40是原方程的解,
∴原先每天生产40万剂疫苗.
7. (2021•江西省)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.
(1)求这种商品的单价;
(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是 48 元/件,乙两次购买这种商品的平均单价是 50 元/件.
(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同 金额 加油更合算(填“金额”或“油量”).
【分析】(1)设这种商品的单价为x元/件.根据“甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件”找到相等关系,列出方程,解出方程即可得出答案;
(2)先计算出第二次购买该商品时甲购买的数量和乙购买的总价,再用两次总价和除以两次的数量和即可得出两次的平均单价;
(3)通过比较(2)的计算结果即可得出答案.
【解答】(1)解:设这种商品的单价为x元/件.
由题意得:,
解得:x=60,
经检验:x=60是原方程的根.
答:这种商品的单价为60元/件.
(2)解:第二次购买该商品时的单价为:60﹣20=40(元/件),
第二次购买该商品时甲购买的件数为:2400÷40=60(件),第二次购买该商品时乙购买的总价为:(3000÷60)×40=2000(元),
∴甲两次购买这种商品的平均单价是:2400×2÷()=48(元/件),乙两次购买这种商品的平均单价是:(3000+2000)÷(×2)=50(元/件).
故答案为:48;50.
(3)解:∵48<50,
∴按相同金额加油更合算.
故答案为:金额.
8. (2021•山东省泰安市)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.
(1)求该厂当前参加生产的工人有多少人?
(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?
【分析】(1)设当前参加生产的工人有x人,根据每人每小时完成的工作量不变,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)利用每人每小时完成的工作量=工作总量÷工作时间÷参与工作的人数,即可求出每人每小时完成的工作量,设还需要生产y天才能完成任务,根据工作总量=工作效率×工作时间×工作人数,即可得出关于y的方程求解.
【解答】解:(1)设当前参加生产的工人有x人,由题意可得:
,
解得:x=30,
经检验:x=30是原分式方程的解,且符合题意,
∴当前参加生产的工人有30人;
(2)每人每小时完成的数量为:16÷8÷40=0.05(万剂),
设还需要生产y天才能完成任务,由题意可得:
4×15+(30+10)×10×0.05y=760,
解得:y=35,
35+4=39(天),
∴该厂共需要39天才能完成任务.
9. (2021•山西省中考)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.
25分钟
【分析】
设走路线一到达太原机场需要分钟,用含x的式子表示路线一、二的速度,再根据路线二平均速度是路线一的倍列等式计算即可.
【详解】
解:设走路线一到达太原机场需要分钟.
根据题意,得.
解得:.
经检验,是原方程的解.
答:走路线一到达太原机场需要25分钟.
10. (2021•四川省自贡市). 随着我国科技事业不断发展,国产无人机大量进入快递行业.现有A,B两种型号的无人机都被用来运送快件,A型机比B型机平均每小时多运送20件,A型机运送700件所用时间与B型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?
【答案】A型机平均每小时运送70件,B型机平均每小时运送50件
【解析】
【分析】设A型机平均每小时运送x件,根据A型机比B型机平均每小时多运送20件,得出B型机平均每小时运送(x-20)件,再根据A型机运送700件所用时间与B型机运送500件所用时间相等,列出方程解之即可.
【详解】解:设A型机平均每小时运送x件,则B型机平均每小时运送(x-20)件,
根据题意得:
解这个方程得:x=70.
经检验x=70是方程的解,∴x-20=50.
∴A型机平均每小时运送70件,B型机平均每小时运送50件.
11. (2021•广西玉林市)某市垃圾处理厂利用焚烧垃圾产生的热能发电,有,两个焚烧妒,每个焚烧炉每天焚烧垃圾均为100吨,每焚烧一吨垃圾,焚烧炉比焚烧炉多发电50度,,焚烧炉每天共发电55000度.
(1)求焚烧一吨垃圾,焚烧炉和焚烧炉各发电多少度?
(2)若经过改进工艺,与改进工艺之前相比每焚烧一吨垃圾,焚烧炉和焚烧炉的发电量分别增加%和%,则,焚烧炉每天共发电至少增加%,求的最小值.
【答案】(1)焚烧一吨垃圾,焚烧炉和焚烧炉各发电300、250度;(2)a最小值为11
12. (2021•山东省威海市) 六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件.
(1)求第一次每件的进价为多少元?
(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?
【答案】(1)第一次每件的进价为50元;(2)两次的总利润为1700元.
【解析】
【分析】(1)设第一次每件的进价为x元,则第二次进价为(1+20%)x,根据等量关系,列出分式方程,即可求解;
(2)根据总利润=总售价-总成本,列出算式,即可求解.
【详解】解:(1)设第一次每件的进价为x元,则第二次进价为(1+20%)x,
根据题意得:,解得:x=50,
经检验:x=50是方程的解,且符合题意,
答:第一次每件的进价为50元;
(2)(元),
答:两次的总利润为1700元.
13. (2021•内蒙古包头市)小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.
(1)求小刚跑步的平均速度;
(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.
【答案】(1)小刚跑步的平均速度为150米/分;(2)
14. (2021•吉林省长春市)为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同,求每千克有机大米的售价为多少元?
【分析】设每千克有机大米的售价为x元,则每千克普通大米的售价为(x﹣2)元,根据数量=总价÷单价,结合用420元购买的有机大米与用300元购买的普通大米的重量相同,即可得出关于x的分式方程,解之经检验后即可得出结论.
【解答】解:设每千克有机大米的售价为x元,则每千克普通大米的售价为(x﹣2)元,
依题意得:=,
解得:x=7,
经检验,x=7是原方程的解,且符合题意.
答:每千克有机大米的售价为7元.
相关试卷
这是一份2023年全国各地中考数学真题分类汇编之分式与分式方程(含解析),共35页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学真题分类汇编——专题04 分式与分式方程(全国通用),文件包含专题04分式与分式方程解析版docx、专题04分式与分式方程原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
这是一份2021年全国中考数学真题分类汇编--方程与不等式:可化为整式方程的分式方程练习(答案版),共14页。