2022届新高考一轮复习人教版 第六章 专题突破4 动量、动力学和能量观点在力学中的应 课件(51张)
展开2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律。(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题。(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题。但需注意所研究的问题是否满足守恒的条件。
(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能的量。(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换。这种问题由于作用时间都极短,因此用动量守恒定律去解决。
[典例1] 如图所示,水平地面上静止放置一辆小车A,质量mA=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计。可视为质点的物块B置于A的最右端,B的质量mB=2 kg。现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到v1=2 m/s。求:
(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l;
[解析] (1)以A为研究对象,由牛顿第二定律有F=mAa①代入数据解得a=2.5 m/s2。②(2)对A、B碰撞后共同运动t=0.6 s的过程,由动量定理得Ft=(mA+mB)v1-(mA+mB)v,③代入数据解得v=1 m/s。④(3)设A、B发生碰撞前,A的速度为vA,对A、B发生碰撞的过程,由于内力远大于外力,由动量守恒定律有mAvA=(mA+mB)v,⑤
[答案] (1)2.5 m/s2 (2)1 m/s (3)0.45 m
1.(多选)如图所示,一平台到地面的高度为h=0.45 m,质量为M=0.3 kg的木块放在平台的右端,木块与平台间的动摩擦因数为μ=0.2。地面上有一质量为m=0.1 kg的玩具青蛙距平台右侧的水平距离为x=1.2 m,旋紧发条后释放,让玩具青蛙斜向上跳起,当玩具青蛙到达木块的位置时速度恰好沿水平方向,玩具青蛙立即抱住木块并和木块一起滑行。已知木块和玩具青蛙均可视为质点,玩具青蛙抱住木块过程时间极短,不计空气阻力,重力加速度g取10 m/s2,则下列说法正确的是( )
A.玩具青蛙在空中运动的时间为0.3 sB.玩具青蛙在平台上运动的时间为2 sC.玩具青蛙起跳时的速度大小为3 m/sD.木块开始滑动时的速度大小为1 m/s
2.(2021·广东汕头模拟)长度L=0.90 m的木板在光滑水平地面上向右运动,将小物块A相对于地面静止轻放到木板右端端点上,一段时间后物块运动到木板左端恰好不会脱离木板。接着再将另一小物块B同样相对于地面静止轻放到木板右端端点上。已知物块A与木板的质量相等,而物块B的质量是A的3倍,两物块与木板间的动摩擦因数均为μ=0.25,物块与木板间的最大静摩擦力等于滑动摩擦力。重力加速度g取10 m/s2,求:(1)木板开始时的初速度v0的大小;(2)最后两物块之间的距离。
此后木板和B保持相对静止一起加速,再经时间t2和A的速度相等,由动量守恒定律得mv0=(m+m+3m)v3,解得末速度v3=0.6 m/s;A在(t1+t2)时间内一直保持匀减速运动,有v3=v1-aA(t1+t2),解得t2=0.16 s;
答案:(1)3 m/s (2)0.66 m
2.解题技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律)。(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理。(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处。特别对于变力做功问题,就更显示出它们的优越性。
[典例2] 如图所示,一质量M=0.8 kg的小车静置于光滑水平地面上,其左侧用固定在地面上的销钉挡住。小车上表面由光滑圆弧轨道BC和水平粗糙轨道CD组成,圆弧轨道BC与水平轨道CD相切于C处,圆弧BC所对应的圆心角θ=37°、半径R=5 m,CD的长度l=6 m。质量m=0.2 kg的小物块(视为质点)从某一高度处的A点以大小v0=4 m/s的速度水平抛出,恰好沿切线方向从B点进入圆弧轨道,物块恰好不滑离小车。取g=10 m/s2,sin 37°=0.6,cs 37°=0.8,空气阻力不计。求:
(1)物块通过B点时的速度大小vB;(2)物块滑到圆弧轨道的C点时对圆弧轨道的压力大小N;(3)物块与水平轨道CD间的动摩擦因数μ。
3.(2021·河北衡水中学高三调研)如图所示,足够长的小平板车B的质量为M,以水平速度v0向右在光滑水平面上运动,与此同时,质量为m的小物体A从车的右端以水平速度v0沿车的粗糙上表面向左运动。若物体与车面之间的动摩擦因数为μ,则在足够长的时间内( )
4.(2021·适应性测试重庆卷)如图所示,质量为3m的小木块1通过长度为L的轻绳悬挂于O点,质量为m的小木块2置于高度为L的光滑水平桌面边沿。把木块1拉至水平位置由静止释放,当其运动到最低点时与木块2相撞,木块2沿水平方向飞出,落在距桌面边沿水平距离为2L处,木块1继续向前摆动。若在碰撞过程中,木块1与桌面间无接触,且忽略空气阻力。求:
(1)碰撞前,木块1在最低点时的速度大小;(2)碰撞后,木块1相对桌面能上升到的最大高度。
2.应对策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度。(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功)。(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率)。
[典例3] (2019·高考全国卷Ⅰ)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B静止于水平轨道的最左端,如图(a)所示。t=0时刻,小物块A在倾斜轨道上从静止开始下滑,一段时间后与B发生弹性碰撞(碰撞时间极短);当A返回到倾斜轨道上的P点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止。物块A运动的vt图象如图(b)所示,图中的v1和t1均为未知量。已知A的质量为m,初始时A与B的高度差为H,重力加速度大小为g,不计空气阻力。
(1)求物块B的质量;(2)在图(b)所描述的整个运动过程中,求物块A克服摩擦力所做的功;(3)已知两物块与轨道间的动摩擦因数均相等。在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B再次碰上。求改变前后动摩擦因数的比值。
5.(2021·贵州贵阳高三适应性考试)如图所示,光滑轨道abc固定在竖直平面内,ab为四分之一圆弧轨道,bc段水平,且与ab圆弧相切于b点,在光滑水平地面上紧靠轨道c端,停着质量为M=3 kg、长度为L=0.5 m的平板车,平板车上表面与bc等高。现将可视为质点的物块从与圆心O等高的a点由静止释放,物块滑至圆弧轨道最低点b时的速度大小为vb=2 m/s,对轨道的压力大小等于30 N,之后物块向右滑上平板车。取重力加速度g=10 m/s2,不计空气阻力。
(1)求该物块的质量;(2)若物块最终未从平板车上滑落,求物块在平板车上滑动过程中产生的热量。
答案:(1)1 kg (2)1.5 J
6.如图所示,水平地面放置A和B两个物块,物块A的质量m1=2 kg,物块B的质量m2=1 kg,物块A、B与地面间的动摩擦因数均为μ=0.5。现对物块A施加一个与水平方向成37°角的外力F,F=10 N,物块A由静止开始运动,经过12 s物块A刚好运动到物块B处,A物块与B物块碰前瞬间撤掉外力F,物块A与物块B碰撞过程没有能量损失,设碰撞时间很短,A、B两物块均可视为质点,g取10 m/s2,sin 37°=0.6,cs 37°=0.8。求:
(1)计算A与B两物块碰撞前瞬间物块A的速度大小;(2)若在物块B的正前方放置一个弹性挡板,物块B与挡板碰撞时没有能量损失,要保证A和B两物块能发生第二次碰撞,弹性挡板距离物块B的距离L不得超过多大?
xA+xB>2L,解得L<3.4 m,即要保证物块A和物块B能发生第二次碰撞,弹性挡板距离物块B的距离L不得超过3.4 m。答案:(1)6 m/s (2)L不得超过3.4 m
高考物理一轮复习第11章专题突破13电磁感应中的动力学、动量和能量问题课件: 这是一份高考物理一轮复习第11章专题突破13电磁感应中的动力学、动量和能量问题课件,共57页。PPT课件主要包含了细研考点·突破题型,思路点拨,答案20W,答案9m等内容,欢迎下载使用。
2024年高考物理第一轮复习课件:第十一章 专题突破14 动力学、动量和能量观点在电磁学中的应用: 这是一份2024年高考物理第一轮复习课件:第十一章 专题突破14 动力学、动量和能量观点在电磁学中的应用,共60页。PPT课件主要包含了答案见解析,答案C,答案A,答案B等内容,欢迎下载使用。
高中物理高考 热点专题系列(五) 动力学、动量和能量观点在力学中的应用 课件: 这是一份高中物理高考 热点专题系列(五) 动力学、动量和能量观点在力学中的应用 课件,共40页。