


小学数学西师大版四年级下册第六单元 平行四边形和梯形平行四边形课时训练
展开18.1平行四边形
同步练习
参考答案与试题解析
一.选择题(共10小题)
1.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为( )
A.6 B.5 C.4 D.3
选D
2.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是( )
A.5 B.7 C.9 D.11
解:∵D、E、F分别为AB、BC、AC中点,
∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,
∴四边形DBEF为平行四边形,
∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7.
故选B.
3.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为( )
A.3cm B.4cm C.5cm D.8cm
解:∵▱ABCD的周长为26cm,
∴AB+AD=13cm,OB=OD,
∵△AOD的周长比△AOB的周长多3cm,
∴(OA+OD+AD)﹣(OA+OB+AB)=AD﹣AB=3cm,
∴AB=5cm,AD=8cm.
∴BC=AD=8cm.
∵AC⊥AB,E是BC中点,
∴AE=BC=4cm;
故选:B.
4.△ABC,D、E分别为AB、AC中点,S△ABC=8,则△DEC的面积为( )
A.6 B.4 C.2 D.1
解:∵△ABC,D、E分别为AB、AC中点,
∴DE是△ABC的中位线,
∴DE∥BC,且DE=BC,
∴△ADE∽△ABC,S△DEC=S△ADE,
∴S△ADE=S△ABC=2.
∴S△DEC=S△ADE=2.
故选:C.
5.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为( )
A.66° B.104° C.114° D.124°
解:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ACD=∠BAC,
由折叠的性质得:∠BAC=∠B′AC,
∴∠BAC=∠ACD=∠B′AC=∠1=22°,
∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;
故选:C.
6.已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是( )
A.OE=DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE
解:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,AB∥DC,
又∵点E是BC的中点,
∴OE是△BCD的中位线,
∴OE=DC,OE∥DC,
∴OE∥AB,
∴∠BOE=∠OBA,
∴选项A、B、C正确;
∵OB≠OC,
∴∠OBE≠∠OCE,
∴选项D错误;
故选:D.
7.在下列条件中,能够判定一个四边形是平行四边形的是( )
A.一组对边平行,另一组对边相等
B.一组对边相等,一组对角相等
C.一组对边平行,一条对角线平分另一条对角线
D.一组对边相等,一条对角线平分另一条对角线
解:A、错误.这个四边形有可能是等腰梯形.
B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.
C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.
D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.
故选C.
8.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知
甲的路线为:A→C→B;
乙的路线为:A→D→E→F→B,其中E为AB的中点;
丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.
若符号[→]表示[直线前进],则根据图(三)、图(四)、图(五)的数据,判断三人行进路线长度的大小关系为( )
A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲
解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE,
∵AE=BE=AB,
∴AD=EF=AC,DE=BE=BC.
∴甲=乙
图3与图1中,三个三角形相似,所以 ==,==,
∵AJ+BJ=AB,
∴AI+JK=AC,IJ+BK=BC
∴甲=丙.∴甲=乙=丙.
故选A.
9.在四边形ABCD中,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD中任选两个使四边形ABCD为平行四边形的选法有( )
A.3 B.4 C.5 D.6
解:任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有(1)(2);(3)(4);(1)(3);(2)(4)共四种.故选B.
10.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,
①四边形ACED是平行四边形;
②△BCE是等腰三角形;
③四边形ACEB的周长是10+2;
④四边形ACEB的面积是16.
则以上结论正确的是( )
A.①②③ B.①②④ C.①③④ D.②④
解:①∵∠ACB=90°,DE⊥BC,
∴∠ACD=∠CDE=90°,
∴AC∥DE,
∵CE∥AD,
∴四边形ACED是平行四边形,故①正确;
②∵D是BC的中点,DE⊥BC,
∴EC=EB,
∴△BCE是等腰三角形,故②正确;
③∵AC=2,∠ADC=30°,
∴AD=4,CD=2,
∵四边形ACED是平行四边形,
∴CE=AD=4,
∵CE=EB,
∴EB=4,DB=2,
∴CB=4,
∴AB==2,
∴四边形ACEB的周长是10+2故③正确;
④四边形ACEB的面积:×2×4+×4×2=8,故④错误,
故选:A.
二.填空题(共4小题)
11.如图,在△ABC中,点D、E、F分别是AB、BC、CA的中点,若△ABC的周长为10cm,则△DEF的周长是 5 cm.
解:如上图所示,
∵D、E分别是AB、BC的中点,
∴DE是△ABC的中位线,
∴DE=AC,
同理有EF=AB,DF=BC,
∴△DEF的周长=(AC+BC+AB)=×10=5.
故答案为5.
12.如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为 50° .
解:∵四边形ABCD是平行四边形,
∴DC∥AB,
∴∠C=∠ABF.
又∵∠C=40°,
∴∠ABF=40°.
∵EF⊥BF,
∴∠F=90°,
∴∠BEF=90°﹣40°=50°.
故答案是:50°.
13.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为 4n﹣3 .
解:第①是1个三角形,1=4×1﹣3;
第②是5个三角形,5=4×2﹣3;
第③是9个三角形,9=4×3﹣3;
∴第n个图形中共有三角形的个数是4n﹣3;
故答案为:4n﹣3.
14.如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的平行四边形ADCE中,DE的最小值是 4 .
解:∵四边形ADCE是平行四边形,
∴BC∥AE,
∴当DE⊥BC时,DE最短,
此时∵∠B=90°,
∴AB⊥BC,
∴DE∥AB,
∴四边形ABDE是平行四边形,
∵∠B=90°,
∴四边形ABDE是矩形,
∴DE=AB=4,
∴DE的最小值为4.
故答案为4.
三.解答题(共6小题)
15.如图所示,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数.
解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,
∴PN,PM分别是△CDB与△DAB的中位线,
∴PM=AB,PN=DC,PM∥AB,PN∥DC,
∵AB=CD,
∴PM=PN,
∴△PMN是等腰三角形,
∵PM∥AB,PN∥DC,
∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,
∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,
∴∠PMN==25°.
16.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.
证明:∵AE⊥AD,CF⊥BC,
∴∠EAD=∠FCB=90°,
∵AD∥BC,
∴∠ADE=∠CBF,
在Rt△AED和Rt△CFB中,
∵,
∴Rt△AED≌Rt△CFB(AAS),
∴AD=BC,
∵AD∥BC,
∴四边形ABCD是平行四边形.
17.如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.
(1)求证:AE=AF;
(2)求证:BE=(AB+AC).
证明:(1)∵DA平分∠BAC,
∴∠BAD=∠CAD,
∵AD∥EM,
∴∠BAD=∠AEF,∠CAD=∠AFE,
∴∠AEF=∠AFE,
∴AE=AF.
(2)作CG∥EM,交BA的延长线于G.
∵EF∥CG,
∴∠G=∠AEF,∠ACG=∠AFE,
∵∠AEF=∠AFE,
∴∠G=∠ACG,
∴AG=AC,
∵BM=CM.EM∥CG,
∴BE=EG,
∴BE=BG=(BA+AG)=(AB+AC).
18.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.
(1)求证:BE=CD;
(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,AB=CD,
∴∠AEB=∠DAE,
∵AE是∠BAD的平分线,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=CD;
(2)解:∵AB=BE,∠BEA=60°,
∴△ABE是等边三角形,
∴AE=AB=4,
∵BF⊥AE,
∴AF=EF=2,
∴BF===2,
∵AD∥BC,
∴∠D=∠ECF,∠DAF=∠E,
在△ADF和△ECF中,
,
∴△ADF≌△ECF(AAS),
∴△ADF的面积=△ECF的面积,
∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.
19.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
证明:(1)∵Rt△ABC中,∠BAC=30°,
∴AB=2BC,
又∵△ABE是等边三角形,EF⊥AB,
∴AB=2AF
∴AF=BC,
在Rt△AFE和Rt△BCA中,
,
∴Rt△AFE≌Rt△BCA(HL),
∴AC=EF;
(2)∵△ACD是等边三角形,
∴∠DAC=60°,AC=AD,
∴∠DAB=∠DAC+∠BAC=90°
又∵EF⊥AB,
∴EF∥AD,
∵AC=EF,AC=AD,
∴EF=AD,
∴四边形ADFE是平行四边形.
20.如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.
(1)求证:四边形DEFG是平行四边形;
(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.
(2)∵∠OBC和∠OCB互余,
∴∠OBC+∠OCB=90°,
∴∠BOC=90°,
∵M为EF的中点,OM=3,
∴EF=2OM=6.
由(1)有四边形DEFG是平行四边形,
∴DG=EF=6.
数学四年级下册平行四边形第3课时一课一练: 这是一份数学四年级下册平行四边形第3课时一课一练,共10页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
数学四年级下册平行四边形第1课时课时作业: 这是一份数学四年级下册平行四边形第1课时课时作业,共13页。
小学第六单元 平行四边形和梯形平行四边形第4课时练习: 这是一份小学第六单元 平行四边形和梯形平行四边形第4课时练习,共9页。
