初中数学人教版八年级上册11.2.1 三角形的内角评课ppt课件
展开1.探索并证明三角形内角和定理.2.能运用三角形内角和定理解决简单问题 。3.掌握方法: 1)转化的数学思想。 2)“猜想—验证”探究问题的基本方法。 3)利用定理,建立方程思想,求三角形内角的度数。
阅读课本P11-13,解决以下问题:
1.你会证明三角形的内角和等于1800吗?除了课本上的方法,还能想到用哪些方法来证明?
2.认真阅读例题,注意定理的应用规范。
3 .完成课本P13【练习】第1题 时间:6分钟
探索并证明三角形内角和定理
问题1 图(1)中,∠B 和∠C 分别拼在∠A 的左右,三个角合起来形成一个平角,出现了一条过点A 的直线l,直线l 与边BC 有什么位置关系?
直线l 与边BC 平行.
问题2 在操作过程中,我们发现了与边BC 平行的 直线l,由此,你又能受到什么启发?你能发现证明“三角形内角和等于180°”的思路吗?
通过添加与边BC平行的辅助线l,利用平行线的性质和平角的定义即可证明结论.
三角形的内角和等于1800.
已知△ABC,求证:∠A+∠B+∠C=180°
证法1:过A作EF∥BC, ∴∠B=∠2(两直线平行,内错角相等) ∠C=∠1(两直线平行,内错角相等) 又∵∠2+∠1+∠BAC=180° ∴∠B+∠C+∠BAC=180°
三角形的内角和等于180°.
证法2:延长BC到D,过C作CE∥BA, ∴ ∠A=∠1 (两直线平行,内错角相等) ∠B=∠2(两直线平行,同位角相等)又∵∠1+∠2+∠ACB=180° ∴∠A+∠B+∠ACB=180°
在△ABC 中,∠A+∠B+∠C=180°
在△ABC 中, ∠A=180°-∠B- ∠C
例1 如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线。求∠ADB的度数
例2 如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80 °方向,C岛在B岛的北偏西40 °方向.求∠ACB的度数。
1、直接求出下列图中x的值。
(2)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A= ∠B= ∠C= .
2、如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一 样的玻璃,那么最省事的办法是 ( )
(A)带①去 (B)带②去 (C)带③去 (D)带①和②去
3.在△ABC中,∠A=55°,∠ B=43°,则∠ACB= .∠ACD= .4.∠A+∠B+∠C+∠D+∠E+∠F= .
5.∠1+∠2+∠3+∠4=______度.
1.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__ .
2.如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是
6.在⊿ABC中,已知∠A= ∠B=2 ∠C,求∠A,∠B, ∠C的度数。
5. 在△ABC中,已知∠A-∠C=250,∠B-∠A=100,求∠B的度数.
1. 说明∠A+∠B+∠C与∠ADC之间的关系.
如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,AE与A′E重合,(1)若∠A=30°,则∠1+∠2?(2)探究∠1 ,∠2 ,∠A三者数量关系,并写出证明
已知:AM,CM分别平分∠BAD和∠BCD,①若∠B=32°,∠D=38°,求∠M的大小;②若∠B=m°,∠D=n°,试说明∠M与∠B,∠D数量关系
发现:已知△ABC中,AE是△ABC的角平分线,∠B=72°,∠C=36°(1)如图1,若AD⊥BC于点D,求∠DAE的度数;(2)如图2,若P为AE上一个动点(P不与A、E重合),且PF⊥BC于点F时,∠EPF= °.(3)探究:如图2△ABC中,已知∠B,∠C均为一般锐角,∠B>∠C,AE是△ABC的角平分线,若P为线段AE和线段AE延长线上一个动点(P不与E重合),且PF⊥BC于点F时,请写出∠EPF与∠B,∠C的关系,并说明理由.
1.如图,BE和BF三等分∠ABC, CE和CF三等分∠ACB,(1)若∠A=60°,求∠BEC和∠BFC的度数.(2)若∠A=x°,求∠BEC和∠BFC的度数.
人教版八年级上册11.2.1 三角形的内角优秀课件ppt: 这是一份人教版八年级上册11.2.1 三角形的内角优秀课件ppt,文件包含人教版数学八年级上册1121《三角形的内角第1课时》课件pptx、人教版数学八年级上册1121《三角形的内角第1课时》教案docx、人教版数学八年级上册1121《三角形的内角第1课时》课时练docx等3份课件配套教学资源,其中PPT共37页, 欢迎下载使用。
数学八年级上册11.2.1 三角形的内角背景图课件ppt: 这是一份数学八年级上册11.2.1 三角形的内角背景图课件ppt,共29页。PPT课件主要包含了学习目标,新课导入,复习引入,方法一量角器测量,方法二剪拼,方法三折叠,新知探究,跟踪训练,课堂小结,三角形的内角和定理等内容,欢迎下载使用。
数学八年级上册11.2.1 三角形的内角背景图课件ppt: 这是一份数学八年级上册11.2.1 三角形的内角背景图课件ppt,共37页。PPT课件主要包含了锐角三角形,已知△ABC,思路总结,作辅助线,基本图形,完成下列各题,x70,x60,x30,x50等内容,欢迎下载使用。