- 2020版高考数学(天津专用)大一轮精准复习精练:9.3 椭圆及其性质 Word版含解析【KS5U 高考】 试卷 2 次下载
- 2020版高考数学(天津专用)大一轮精准复习精练:9.4 双曲线及其性质 Word版含解析【KS5U 高考】 试卷 2 次下载
- 2020版高考数学(天津专用)大一轮精准复习精练:9.6 直线与圆锥曲线的位置关系 Word版含解析【KS5U 高考】 试卷 2 次下载
- 2020版高考数学(天津专用)大一轮精准复习精练:9.7 圆锥曲线的综合问题 Word版含解析【KS5U 高考】 试卷 1 次下载
- 2020版高考数学(天津专用)大一轮精准复习精练:10 分类加法计数原理与分步乘法计数原理、排列与组合 Word版含解析【KS5U 高考】 试卷 1 次下载
2020版高考数学(天津专用)大一轮精准复习精练:9.5 抛物线及其性质 Word版含解析【KS5U 高考】
展开9.5 抛物线及其性质
挖命题
【考情探究】
考点 | 内容解读 | 5年考情 | 预测热度 | ||
考题示例 | 考向 | 关联考点 | |||
1.抛物线及其标准方程 | 1.了解抛物线的定义,并会利用定义解题 2.掌握求抛物线标准方程的基本步骤(定型、定位、定量)和基本方法(定义法和待定系数法) | 2017课标Ⅱ,16 | 抛物线的定义 | 梯形的中位线 | ★☆☆ |
2.抛物线的几何性质 | 1.知道抛物线的简单几何性质(范围、对称性、顶点、离心率) 2.能用其性质解决有关的抛物线问题,了解抛物线的一些实际应用 | 2017天津文,12 | 抛物线的准线 | 直线与圆的位置关系 | ★★★ |
3.抛物线中弦的相关问题 | 1.理解并掌握抛物线中与焦点弦有关的性质与结论 2.能解决抛物线中与弦有关的问题 | 2018课标Ⅲ,16 | 求焦点弦所在直线的斜率 | 直线与抛物线的位置关系 | ★☆☆ |
分析解读 从高考试题来看,抛物线的定义、标准方程、几何性质以及直线与抛物线的位置关系等一直是命题的热点,题型既有选择题、填空题,又有解答题;客观题突出“小而巧”的特点,主要考查抛物线的定义、标准方程,主观题考查得较为全面,除考查定义、性质之外,还考查直线与抛物线的位置关系,考查基本运算能力、逻辑思维能力和综合分析问题的能力,着力于数学思想方法的考查.
破考点
【考点集训】
考点一 抛物线及其标准方程
1.(2016四川文,3,5分)抛物线y2=4x的焦点坐标是( )
A.(0,2) B.(0,1) C.(2,0) D.(1,0)
答案 D
2.(2014安徽,3,5分)抛物线y=x2的准线方程是( )
A.y=-1 B.y=-2 C.x=-1 D.x=-2
答案 A
3.(2016浙江,9,4分)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是 .
答案 9
考点二 抛物线的几何性质
4.(2017课标Ⅱ文,12,5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为( )
A. B.2 C.2 D.3
答案 C
5.(2014上海文,3,4分)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为 .
答案 x=-2
考点三 抛物线中弦的相关问题
6.(2014课标Ⅱ文,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=( )
A. B.6 C.12 D.7
答案 C
7.(2017课标Ⅰ,10,5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为( )
A.16 B.14 C.12 D.10
答案 A
炼技法
【方法集训】
方法1 求抛物线标准方程的方法
1.已知抛物线C的开口向下,其焦点是双曲线-x2=1的一个焦点,则C的标准方程为( )
A.y2=8x B.x2=-8y C.y2=x D.x2=-y
答案 B
2.已知抛物线C的焦点为F(0,1),则抛物线C的标准方程为 .
答案 x2=4y
方法2 解决直线与抛物线位置关系问题的方法
3.(2017课标Ⅰ文,20,12分)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.
解析 (1)设A(x1,y1),B(x2,y2),
则x1≠x2,y1=,y2=,x1+x2=4,
于是直线AB的斜率k===1.
(2)由y=,得y'=,
设M(x3,y3),由题设知=1,
解得x3=2,于是M(2,1).
设直线AB的方程为y=x+m,
故线段AB的中点为N(2,2+m),|MN|=|m+1|.
将y=x+m代入y=得x2-4x-4m=0.
当Δ=16(m+1)>0,即m>-1时,x1,2=2±2.
从而|AB|=|x1-x2|=4.
由题设知|AB|=2|MN|,
即4=2(m+1),解得m=7.
所以直线AB的方程为y=x+7.
过专题
【五年高考】
A组 自主命题·天津卷题组
(2017天津文,12,5分)设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为 .
答案 (x+1)2+(y-)2=1
B组 统一命题、省(区、市)卷题组
考点一 抛物线及其标准方程
1.(2016课标Ⅱ文,5,5分)设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=( )
A. B.1 C. D.2
答案 D
2.(2017课标Ⅱ,16,5分)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|= .
答案 6
考点二 抛物线的几何性质
1.(2016课标Ⅰ,10,5分)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为( )
A.2 B.4 C.6 D.8
答案 B
2.(2015陕西文,3,5分)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线焦点坐标为( )
A.(-1,0) B.(1,0) C.(0,-1) D.(0,1)
答案 B
3.(2018北京文,10,5分)已知直线l过点(1,0)且垂直于x轴.若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为 .
答案 (1,0)
考点三 抛物线中弦的相关问题
1.(2018课标Ⅲ,16,5分)已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k= .
答案 2
2.(2014湖南文,14,5分)平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=-1的距离相等.若机器人接触不到过点P(-1,0)且斜率为k的直线,则k的取值范围是 .
答案 (-∞,-1)∪(1,+∞)
3.(2016浙江,19,15分)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.
(1)求p的值;
(2)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M.求M的横坐标的取值范围.
解析 (1)由题意可得,抛物线上点A到焦点F的距离等于点A到直线x=-1的距离,由抛物线的定义得=1,即p=2.
(2)由(1)得,抛物线方程为y2=4x,F(1,0),可设A(t2,2t),t≠0,t≠±1.
因为AF不垂直于y轴,可设直线AF:x=sy+1(s≠0),由消去x得y2-4sy-4=0,
故y1y2=-4,所以,B.
又直线AB的斜率为,故直线FN的斜率为-.
从而得直线FN:y=-(x-1),直线BN:y=-.
所以N.
设M(m,0),由A,M,N三点共线得
=,于是m=.
所以m<0或m>2.
经检验,m<0或m>2满足题意.
综上,点M的横坐标的取值范围是(-∞,0)∪(2,+∞).
思路分析 (1)利用抛物线的定义来解题;(2)由(1)知抛物线的方程,可设A点坐标及直线AF的方程,与抛物线方程联立可得B点坐标,进而得直线FN的方程与直线BN的方程,联立可得N点坐标,最后利用A,M,N三点共线可得kAN=kAM,最终求出结果.
评析本题主要考查抛物线的几何性质、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.
C组 教师专用题组
考点一 抛物线及其标准方程
1.(2015浙江,5,5分)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是( )
A. B. C. D.
答案 A
2.(2014湖南,15,5分)如图,正方形ABCD和正方形DEFG的边长分别为a,b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C,F两点,则= .
答案 1+
3.(2012北京,12,5分)在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点,其中点A在x轴上方.若直线l的倾斜角为60°,则△OAF的面积为 .
答案
考点二 抛物线的几何性质
(2014辽宁文,8,5分)已知点A(-2,3)在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为( )
A.- B.-1 C.- D.-
答案 C
考点三 抛物线中弦的相关问题
1.(2014四川文,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )
A.2 B.3 C. D.
答案 B
2.(2014浙江,22,14分)已知△ABP的三个顶点都在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,=3.
(1)若||=3,求点M的坐标;
(2)求△ABP面积的最大值.
解析 (1)由题意知焦点F(0,1),准线方程为y=-1.
设P(x0,y0),由抛物线定义知|PF|=y0+1,得到y0=2,
所以P(2,2)或P(-2,2).
由=3,分别得M或M.
(2)设直线AB的方程为y=kx+m,点A(x1,y1),B(x2,y2),P(x0,y0).由得x2-4kx-4m=0,
于是Δ=16k2+16m>0,x1+x2=4k,x1x2=-4m,
所以AB中点M的坐标为(2k,2k2+m).
由=3,得(-x0,1-y0)=3(2k,2k2+m-1),
所以由=4y0得k2=-m+.
由Δ>0,k2≥0,得-<m≤.
又因为|AB|=4·,
点F(0,1)到直线AB的距离为d=,
所以S△ABP=4S△ABF=8|m-1|=.
记f(m)=3m3-5m2+m+1.
令f '(m)=9m2-10m+1=0,解得m1=,m2=1.
可得f(m)在上是增函数,在上是减函数,在上是增函数.又f=>f,
所以,当m=时, f(m)取到最大值,此时k=±.
所以,△ABP面积的最大值为.
【三年模拟】
一、选择题(每小题5分,共25分)
1.(2018天津实验中学热身训练,7)抛物线C1:y=x2(p>0)的焦点与双曲线C2:-y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=( )
A. B. C. D.
答案 D
2.(2018天津耀华中学二模,5)已知双曲线-=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )
A. B.2 C. D.2
答案 D
3.(2018天津红桥二模,7)点A是抛物线C1:y2=2px(p>0)与双曲线C2:-=1(a>0,b>0)的一条渐近线的一个交点,若点A到抛物线C1的焦点的距离为p,则双曲线C2的离心率等于( )
A. B. C. D.
答案 A
4.(2017天津红桥一模,6)已知抛物线y2=2px(p>0)的焦点F与双曲线-=1的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上,且|AK|=|AF|,则点A的横坐标为( )
A.2 B.4 C.3 D.2
答案 C
5.(2017天津河东一模,7)过抛物线x2=4y的焦点F作直线AB,CD与抛物线交于A,B,C,D四点,且AB⊥CD,则·+·的最大值等于( )
A.-4 B.-8 C.4 D.-16
答案 D
二、填空题(每小题5分,共25分)
6.(2018天津南开中学第三次月考,13)已知M为抛物线y2=2px(p>0)上的一点,若以M为圆心经过原点的圆与x轴交于另一点(2,0),且与该抛物线的准线相切,则p的值为 .
答案 4
7.(2017天津河北二模,11)已知点A(-2,3)在抛物线C:y2=2px(p>0)的准线上,记C的焦点为F,则直线AF的斜率为 .
答案 -
8.(2017天津河西二模,13)已知F是抛物线y2=x的焦点,A、B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为 .
答案
9.(2017天津河西一模,14)设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点.若|FQ|=2,则直线l的斜率等于 .
答案 ±
10.(2017天津十二区县一模,13)设抛物线y2=2px(p>0)的焦点为F,准线为l.过焦点的直线分别交抛物线于A,B两点,分别过A,B作l的垂线,垂足为C,D.若|AF|=2|BF|,且三角形CDF的面积为,则p的值为 .
答案
2020版高考数学(天津专用)大一轮精准复习精练:8.3 直线、平面平行的判定与性质 Word版含解析【KS5U 高考】: 这是一份2020版高考数学(天津专用)大一轮精准复习精练:8.3 直线、平面平行的判定与性质 Word版含解析【KS5U 高考】,共20页。
2020版高考数学(天津专用)大一轮精准复习精练:9.4 双曲线及其性质 Word版含解析【KS5U 高考】: 这是一份2020版高考数学(天津专用)大一轮精准复习精练:9.4 双曲线及其性质 Word版含解析【KS5U 高考】,共8页。
2020版高考数学(天津专用)大一轮精准复习精练:9.3 椭圆及其性质 Word版含解析【KS5U 高考】: 这是一份2020版高考数学(天津专用)大一轮精准复习精练:9.3 椭圆及其性质 Word版含解析【KS5U 高考】,共16页。