- 2020版高考数学(天津专用)大一轮精准复习精练:9.7 圆锥曲线的综合问题 Word版含解析【KS5U 高考】 试卷 1 次下载
- 2020版高考数学(天津专用)大一轮精准复习精练:10 分类加法计数原理与分步乘法计数原理、排列与组合 Word版含解析【KS5U 高考】 试卷 1 次下载
- 2020版高考数学(天津专用)大一轮精准复习精练:11.2 离散型随机变量及其分布列、均值与方差 Word版含解析【KS5U 高考】 试卷 2 次下载
- 2020版高考数学(天津专用)大一轮精准复习精练:11.4 统计 Word版含解析【KS5U 高考】 试卷 2 次下载
- 2020版高考数学(天津专用)大一轮精准复习精练:12 数系的扩充与复数的引入 Word版含解析【KS5U 高考】 试卷 1 次下载
2020版高考数学(天津专用)大一轮精准复习精练:11.3 二项分布与正态分布 Word版含解析【KS5U 高考】
展开11.3 二项分布与正态分布
挖命题
【考情探究】
考点 | 内容解读 | 5年考情 | 预测热度 | ||
考题示例 | 考向 | 关联考点 | |||
1.条件概率、相互独立事件及二项分布 | 了解条件概率和两个相互独立事件的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题 | 2012天津,16 | 两个相互独立事件的概率的求法 | 互斥事件的概率公式、期望 | ★★★ |
2.正态分布及其应用 | 利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义 | 2017课标Ⅰ,19 | 正态分布的应用 | 数学期望 | ★☆☆ |
分析解读 1.了解条件概率和两个事件相互独立的概念,掌握求条件概率的步骤,会求条件概率.2.掌握独立事件概率的求法,能用二项分布解决实际问题.3.了解正态分布与正态曲线的概念,掌握正态曲线的性质.4.独立事件的概率为近几年高考的热点.本节在高考中难度为易或中等.
破考点
【考点集训】
考点一 条件概率、相互独立事件及二项分布
1.随机变量ξ~B(n,p),且Eξ=300,Dξ=200,则等于( )
A.3 200 B.2 700 C.1 350 D.1 200
答案 B
2.(2014课标Ⅱ,5,5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )
A.0.8 B.0.75 C.0.6 D.0.45
答案 A
3.某篮球队甲、乙两名球员在一个赛季中前10场比赛中投篮命中情况统计如下表注:表中分数,N表示投篮次数,n表示命中次数,假设各场比赛相互独立.
场次 球员 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲 | ||||||||||
乙 |
根据统计表的信息:
(1)从上述比赛中等可能随机选择一场,分别求甲、乙球员在该场比赛中投篮命中率大于50%的概率;
(2)试估计甲、乙两名球员在第11场比赛中恰有一人的命中率大于50%的概率;
(3)在接下来的3场比赛中,用X表示这3场比赛中乙球员的命中率大于50%的场数,试写出X的分布列,并求X的数学期望.
解析 (1)根据投篮统计数据知,在10场比赛中,甲球员的投篮命中率大于50%的场次有5场,
所以在随机选择的一场比赛中,甲球员的投篮命中率大于50%的概率是.在10场比赛中,乙球员的投篮命中率大于50%的场次有4场,所以在随机选择的一场比赛中,乙球员的投篮命中率大于50%的概率是.
(2)设在一场比赛中,甲、乙两名球员恰有一人命中率大于50%为事件A,甲球员的命中率大于50%且乙球员的命中率不大于50%为事件B1,乙球员的命中率大于50%且甲球员的命中率不大于50%为事件B2,
则P(A)=P(B1)+P(B2)=×+×=.
(3)X的可能取值为0,1,2,3.
P(X=0)==;
P(X=1)==;
P(X=2)==;
P(X=3)==.
X的分布列如下表:
X | 0 | 1 | 2 | 3 |
P |
所以EX=3×=.
思路分析 (1)利用原始数据找到符合要求的场次,从而求出概率;(2)把“恰有一人命中率大于50%”分解为互斥事件的和,求概率;(3)利用(1)中的概率,结合3次独立重复试验和二项分布求分布列和数学期望.
考点二 正态分布及其应用
4.已知随机变量ξ服从正态分布N(0,σ2).若P(ξ>2)=0.023,则P(-2≤ξ≤2)=( )
A.0.477 B.0.628 C.0.954 D.0.977
答案 C
5.设X~N(μ1,),Y~N(μ2,),这两个正态分布密度曲线如图所示.下列结论中正确的是( )
A.P(Y≥μ2)≥P(Y≥μ1)
B.P(X≤σ2)≤P(X≤σ1) C.对任意正数t,P(X≤t)≥P(Y≤t)
D.对任意正数t,P(X≥t)≥P(Y≥t)
答案 C
炼技法
【方法集训】
方法1 独立重复试验及二项分布问题的求解方法
1.(2017课标Ⅱ,13,5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX= .
答案 1.96
2.(2015广东,13,5分)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p= .
答案
方法2 正态分布及其应用方法
3.某校在高三第一次模拟考试中约有1 000人参加考试,其数学考试成绩近似服从正态分布,即X~ N(100,a2)(a>0),试卷满分为150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的,则此次数学考试成绩在100分到110分(包含100分和110分)之间的人数约为( )
A.400 B.500 C.600 D.800
答案 A
4.高三某班有50名学生,一次数学考试的成绩ξ服从正态分布N(105,102),已知P(95≤ξ≤105)=0.341 3,该班学生此次考试数学成绩在115分以上的概率为( )
A.0.158 7 B.0.341 3 C.0.182 6 D.0.500 0
答案 A
过专题
【五年高考】
A组 自主命题·天津卷题组
(2012天津,16,13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列与数学期望Eξ.
解析 依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的概率为.
设“这4个人中恰有i人去参加甲游戏”为事件Ai(i=0,1,2,3,4),则P(Ai)= .
(1)这4个人中恰有2人去参加甲游戏的概率P(A2)=·=.
(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则B=A3∪A4.由于A3与A4互斥,
故P(B)=P(A3)+P(A4)=+=.
所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为.
(3)ξ的所有可能取值为0,2,4.
由于A1与A3互斥,A0与A4互斥,
故P(ξ=0)=P(A2)=,
P(ξ=2)=P(A1)+P(A3)=,
P(ξ=4)=P(A0)+P(A4)=.
所以ξ的分布列是
ξ | 0 | 2 | 4 |
P |
随机变量ξ的数学期望Eξ=0×+2×+4×=.
B组 统一命题、省(区、市)卷题组
考点一 条件概率、相互独立事件及二项分布
1.(2018课标Ⅲ,8,5分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( )
A.0.7 B.0.6 C.0.4 D.0.3
答案 B
2.(2015课标Ⅰ,4,5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )
A.0.648 B.0.432 C.0.36 D.0.312
答案 A
考点二 正态分布及其应用
1.(2015山东,8,5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )
(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A.4.56% B.13.59% C.27.18% D.31.74%
答案 B
2.(2015湖北,4,5分)设X~N(μ1,),Y~N(μ2,),这两个正态分布密度曲线如图所示.下列结论中正确的是( )
A.P(Y≥μ2)≥P(Y≥μ1)
B.P(X≤σ2)≤P(X≤σ1) C.对任意正数t,P(X≤t)≥P(Y≤t)
D.对任意正数t,P(X≥t)≥P(Y≥t)
答案 C
3.(2015湖南,7,5分)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为( )
附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.
A.2 386 B.2 718 C.3 413 D.4 772
答案 C
C组 教师专用题组
(2017课标Ⅰ,19,12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线在正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(i)试说明上述监控生产过程方法的合理性;
(ii)下面是检验员在一天内抽取的16个零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
经计算得=xi=9.97,s==≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查.剔除(-3,+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.997 4.
0.997 416≈0.959 2,≈0.09.
解析 本题考查了统计与概率中的二项分布和正态分布的性质及应用.
(1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.997 4,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.002 6,故X~B(16,0.002 6).
因此P(X≥1)=1-P(X=0)=1-0.997 416≈0.040 8.
X的数学期望为EX=16×0.002 6=0.041 6.
(2)(i)如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.002 6,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.040 8,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.
(ii)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出有一个零件的尺寸在(-3,+3)之外,因此需对当天的生产过程进行检查.
剔除(-3,+3)之外的数据9.22,剩下数据的平均数为
×(16×9.97-9.22)=10.02,因此μ的估计值为10.02.
=16×0.2122+16×9.972≈1 591.134,
剔除(-3,+3)之外的数据9.22,剩下数据的样本方差为
×(1 591.134-9.222-15×10.022)≈0.008,
因此σ的估计值为≈0.09.
方法总结 统计与概率的综合应用.
(1)正态分布:若变量X服从正态分布N(μ,σ2),其中μ为样本的均值,正态分布曲线的对称轴为x=μ;σ为样本数据的标准差,体现了数据的稳定性.
(2)二项分布:若变量X~B(n,p),则X的期望EX=np,方差DX=np(1-p).
【三年模拟】
解答题(共60分)
1.(2018天津河北二模,16)某地拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司中选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标问题中随机抽取3个问题,已知这6个问题中,甲公司可正确回答其中的4道题,而乙公司能正确回答每道题目的概率均为,且甲、乙两家公司是否答对相互独立,互不影响.
(1)求甲、乙两家公司共答对2道题的概率;
(2)设X为乙公司正确回答的题数,求随机变量X的分布列和数学期望.
解析 (1)由题意可知甲公司至少能答对1题.
甲、乙公司各答对1题的概率为××=,
甲公司答对2题,乙公司全答错的概率为×=,
∴甲、乙两家公司共答对2道题的概率为+=.
(2)X的可能取值为0,1,2,3,且X~B,
∴P(X=0)==,P(X=1)=×=,
P(X=2)=×=,
P(X=3)==.
∴X的分布列为
X | 0 | 1 | 2 | 3 |
P |
∴EX=1×+2×+3×=2.
2.(2018天津南开三模,16)某综艺节目中,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖,甲、乙、丙三名老师都有“获奖”“待定”“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任意一类票的概率为,且三人投票互不影响,若投票结果中至少有两张“获奖”票,则决定该节目获一等奖;否则,该节目不能获一等奖.
(1)求某节目获一等奖的概率;
(2)求该节目投票结果中所含“获奖”票和“待定”票票数之和X的分布列及数学期望.
解析 (1)设“某节目的投票结果获一等奖”为事件A,
则事件A包含该节目可以获2张“获奖”票或3张“获奖”票,
∴某节目获一等奖的概率
P(A)=×+=.
(2)所含“获奖”票和“待定”票票数之和X的可能取值为0,1,2,3,且X~B.
∴P(X=0)==,P(X=1)=××=,
P(X=2)=×=,P(X=3)==,
∴X的分布列为
X | 0 | 1 | 2 | 3 |
P |
∴EX=1×+2×+3×=2.
3.(2019届天津一中1月月考,16)甲、乙、丙三个口袋内都分别装有6个只有颜色不相同的球,并且每个口袋内的6个球均有1个红球,2个黑球,3个无色透明的球,现从甲、乙、丙三个口袋中依次随机各摸出1个球.
(1)求恰好摸出红球、黑球和无色球各1个的概率;
(2)求摸出的3个球中含有有色球数ξ的概率分布列和数学期望.
解析 由于各个口袋中球的情况一样,而且从每一个口袋中摸出红球、黑球、无色球的概率分别为,,,所以根据相互独立事件同时发生的概率公式可得
(1)P=×××=.
(2)ξ的所有可能取值为0,1,2,3,
所以P(ξ=0)==,P(ξ=1)=×=,P(ξ=2)=×=,P(ξ=3)==.
所以ξ的分布列为
ξ | 0 | 1 | 2 | 3 |
P |
Eξ=0×+1×+2×+3×=.
4.(2019届天津耀华中学第一次月考,16)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.
(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).
解析 用A表示“甲在4局以内(含4局)赢得比赛”,Ak表示“第k局甲获胜”,Bk表示“第k局乙获胜”,
则P(Ak)=,P(Bk)=,k=1,2,3,4,5.
(1)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)
=P(A1)P(A2)+P(B1)P(A2)P(A3)+P(A1)P(B2)P(A3)P(A4)
=+×+××=.
(2)X的可能取值为2,3,4,5.
P(X=2)=P(A1A2)+P(B1B2)
=P(A1)P(A2)+P(B1)P(B2)=,
P(X=3)=P(B1A2A3)+P(A1B2B3)
=P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=,
P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)
=P(A1)P(B2)P(A3)P(A4)+P(B1)P(A2)P(B3)P(B4)=,
P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=.
故X的分布列为
X | 2 | 3 | 4 | 5 |
P |
EX=2×+3×+4×+5×=.
2020版高考数学(天津专用)大一轮精准复习精练:9.4 双曲线及其性质 Word版含解析【KS5U 高考】: 这是一份2020版高考数学(天津专用)大一轮精准复习精练:9.4 双曲线及其性质 Word版含解析【KS5U 高考】,共8页。
2020版高考数学(天津专用)大一轮精准复习精练:9.3 椭圆及其性质 Word版含解析【KS5U 高考】: 这是一份2020版高考数学(天津专用)大一轮精准复习精练:9.3 椭圆及其性质 Word版含解析【KS5U 高考】,共16页。
2020版高考数学(天津专用)大一轮精准复习精练:2.7 函数与方程 Word版含解析【KS5U 高考】: 这是一份2020版高考数学(天津专用)大一轮精准复习精练:2.7 函数与方程 Word版含解析【KS5U 高考】,共6页。