年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    专题06分式方程(共41道)-2020年中考数学真题分项汇编(原卷版)【全国通用】

    专题06分式方程(共41道)-2020年中考数学真题分项汇编(原卷版)【全国通用】第1页
    专题06分式方程(共41道)-2020年中考数学真题分项汇编(原卷版)【全国通用】第2页
    专题06分式方程(共41道)-2020年中考数学真题分项汇编(原卷版)【全国通用】第3页
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题06分式方程(共41道)-2020年中考数学真题分项汇编(原卷版)【全国通用】

    展开

    这是一份专题06分式方程(共41道)-2020年中考数学真题分项汇编(原卷版)【全国通用】,共6页。
    一.选择题(共17小题)
    1.(2020•哈尔滨)方程2x+5=1x-2的解为( )
    A.x=﹣1B.x=5C.x=7D.x=9
    2.(2020•成都)已知x=2是分式方程kx+x-3x-1=1的解,那么实数k的值为( )
    A.3B.4C.5D.6
    3.(2020•甘孜州)分式方程3x-1-1=0的解为( )
    A.x=1B.x=2C.x=3D.x=4
    4.(2020•黑龙江)已知关于x的分式方程xx-3-4=k3-x的解为非正数,则k的取值范围是( )
    A.k≤﹣12B.k≥﹣12C.k>﹣12D.k<﹣12
    5.(2020•齐齐哈尔)若关于x的分式方程3xx-2=m2-x+5的解为正数,则m的取值范围为( )
    A.m<﹣10B.m≤﹣10
    C.m≥﹣10且m≠﹣6D.m>﹣10且m≠﹣6
    6.(2020•泸州)已知关于x的分式方程mx-1+2=-31-x的解为非负数,则正整数m的所有个数为( )
    A.3B.4C.5D.6
    7.(2020•黑龙江)已知关于x的分式方程xx-2-4=k2-x的解为正数,则k的取值范围是( )
    A.﹣8<k<0B.k>﹣8且k≠﹣2C.k>﹣8 且k≠2D.k<4且k≠﹣2
    8.(2020•长沙)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得( )
    A.400x-30=500xB.400x=500x+30
    C.400x=500x-30D.400x+30=500x
    9.(2020•福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是( )
    A.3(x﹣1)=6210xB.6210x-1=3
    C.3x﹣1=6210xD.6210x=3
    10.(2020•辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为( )
    A.3000x=4200x-80B.3000x+80=4200x
    C.4200x=3000x-80D.3000x=4200x+80
    11.(2020•牡丹江)若关于x的方程mx+1-2x=0的解为正数,则m的取值范围是( )
    A.m<2B.m<2且m≠0C.m>2D.m>2且m≠4
    12.(2020•自贡)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是( )
    A.80(1+35%)x-80x=40B.80(1+35%)x-80x=40
    C.80x-80(1+35%)x=40D.80x-80(1+35%)x=40
    13.(2020•重庆)若关于x的一元一次不等式组3x-12≤x+3,x≤a的解集为x≤a;且关于y的分式方程y-ay-2+3y-4y-2=1有正整数解,则所有满足条件的整数a的值之积是( )
    A.7B.﹣14C.28D.﹣56
    14.(2020•遂宁)关于x的分式方程mx-2-32-x=1有增根,则m的值( )
    A.m=2B.m=1C.m=3D.m=﹣3
    15.(2020•重庆)若关于x的一元一次不等式组2x-1≤3(x-2),x-a2>1的解集为x≥5,且关于y的分式方程yy-2+a2-y=-1有非负整数解,则符合条件的所有整数a的和为( )
    A.﹣1B.﹣2C.﹣3D.0
    16.(2020•上海)用换元法解方程x+1x2+x2x+1=2时,若设x+1x2=y,则原方程可化为关于y的方程是( )
    A.y2﹣2y+1=0B.y2+2y+1=0C.y2+y+2=0D.y2+y﹣2=0
    17.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=1a-b2,这里等式右边是实数运算.例如:1⊗3=11-32=-18.则方程x⊗(﹣2)=2x-4-1的解是( )
    A.x=4B.x=5C.x=6D.x=7
    二.填空题(共10小题)
    18.(2020•徐州)方程9x=8x-1的解为 .
    19.(2020•盐城)分式方程x-1x=0的解为x= .
    20.(2020•广元)关于x的分式方程m2x-1+2=0的解为正数,则m的取值范围是 .
    21.(2020•淮安)方程3x-1+1=0的解为 .
    22.(2020•南京)方程xx-1=x-1x+2的解是 .
    23.(2020•绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程 .
    24.(2020•杭州)若分式1x+1的值等于1,则x= .
    25.(2020•嘉兴)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程 .
    26.(2020•内江)若数a使关于x的分式方程x+2x-1+a1-x=3的解为非负数,且使关于y的不等式组y-34-y+13≥-13122(y-a)<0的解集为y≤0,则符合条件的所有整数a的积为 .
    27.(2020•菏泽)方程x-1x=x+1x-1的解是 .
    三.解答题(共14小题)
    28.(2020•湘潭)解分式方程:3x-1+2=xx-1.
    29.(2020•陕西)解分式方程:x-2x-3x-2=1.
    30.(2020•遵义)计算:
    (1)sin30°﹣(π﹣3.14)0+(-12)﹣2;
    (2)解方程;1x-2=32x-3.
    31.(2020•苏州)解方程:xx-1+1=2x-1.
    32.(2020•广东)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35.
    (1)求每个A,B类摊位占地面积各为多少平方米?
    (2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.
    33.(2020•牡丹江)某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:
    (1)A,B两种书包每个进价各是多少元?
    (2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?
    (3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,B种书包各有几个?
    34.(2020•襄阳)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的45,这样120吨水可多用3天,求现在每天用水量是多少吨?
    35.(2020•连云港)甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,乙公司共捐款140000元.下面是甲、乙两公司员工的一段对话:
    (1)甲、乙两公司各有多少人?
    (2)现甲、乙两公司共同使用这笔捐款购买A、B两种防疫物资,A种防疫物资每箱15000元,B种防疫物资每箱12000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).
    36.(2020•扬州)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.
    进货单
    商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:
    李阿姨:我记得甲商品进价比乙商品进价每件高50%.
    王师傅:甲商品比乙商品的数量多40件.
    请你求出乙商品的进价,并帮助他们补全进货单.
    37.(2020•泰州)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.
    38.(2020•常德)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?
    39.(2020•泰安)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界 共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.
    (1)A,B两种茶叶每盒进价分别为多少元?
    (2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?
    40.(2020•湖州)某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.
    (1)求甲、乙两个车间各有多少名工人参与生产?
    (2)为了提前完成生产任务,该企业设计了两种方案:
    方案一 甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.
    方案二 乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.
    设计的这两种方案,企业完成生产任务的时间相同.
    ①求乙车间需临时招聘的工人数;
    ②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.
    41.(2020•黔西南州)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:
    (1)A型自行车去年每辆售价多少元?
    (2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?
    商品
    进价(元/件)
    数量(件)
    总金额(元)

    7200

    3200

    相关试卷

    专题06分式与分式方程(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】:

    这是一份专题06分式与分式方程(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题06分式与分式方程优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题06分式与分式方程优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    初中数学中考复习 专题06 分式方程-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版):

    这是一份初中数学中考复习 专题06 分式方程-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版),共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题8分式方程(共32题)-2021年中考数学真题分项汇编(原卷版)【全国通用】:

    这是一份专题8分式方程(共32题)-2021年中考数学真题分项汇编(原卷版)【全国通用】,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map