终身会员
搜索
    上传资料 赚现金
    专题21圆填空题(共50道)-2020年中考数学真题分项汇编(解析版)【全国通用】
    立即下载
    加入资料篮
    专题21圆填空题(共50道)-2020年中考数学真题分项汇编(解析版)【全国通用】01
    专题21圆填空题(共50道)-2020年中考数学真题分项汇编(解析版)【全国通用】02
    专题21圆填空题(共50道)-2020年中考数学真题分项汇编(解析版)【全国通用】03
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题21圆填空题(共50道)-2020年中考数学真题分项汇编(解析版)【全国通用】

    展开
    这是一份专题21圆填空题(共50道)-2020年中考数学真题分项汇编(解析版)【全国通用】,共31页。

    2020年中考数学真题分项汇编(全国通用)
    专题21圆填空题(共50道)
    一.填空题(共50小题)
    1.(2020•随州)如图,点A,B,C在⊙O上,AD是∠BAC的角平分线,若∠BOC=120°,则∠CAD的度数为 30° .

    【分析】先根据圆周角定理得到∠BAC=12∠BOC=60°,然后利用角平分线的定义确定∠CAD的度数.
    【解析】∵∠BAC=12∠BOC=12×120°=60°,
    而AD是∠BAC的角平分线,
    ∴∠CAD=12∠BAC=30°.
    故答案为30°.
    2.(2020•黑龙江)如图,AD是△ABC的外接圆⊙O的直径,若∠BCA=50°,则∠ADB= 50 °.

    【分析】根据圆周角定理即可得到结论.
    【解析】∵AD是△ABC的外接圆⊙O的直径,
    ∴点A,B,C,D在⊙O上,
    ∵∠BCA=50°,
    ∴∠ADB=∠BCA=50°,
    故答案为:50.
    3.(2020•无锡)已知圆锥的底面半径为1cm,高为3cm,则它的侧面展开图的面积为= 2π cm2.
    【分析】先利用勾股定理求出圆锥的母线l的长,再利用圆锥的侧面积公式:S侧=πrl计算即可.
    【解析】根据题意可知,圆锥的底面半径r=1cm,高h=3cm,
    ∴圆锥的母线l=r2+h2=2,
    ∴S侧=πrl=π×1×2=2π(cm2).
    故答案为:2π.
    4.(2020•湖州)如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是 3 .

    【分析】过点O作OH⊥CD于H,连接OC,如图,根据垂径定理得到CH=DH=4,再利用勾股定理计算出OH=3,从而得到CD与AB之间的距离.
    【解析】过点O作OH⊥CD于H,连接OC,如图,则CH=DH=12CD=4,
    在Rt△OCH中,OH=52-42=3,
    所以CD与AB之间的距离是3.
    故答案为3.

    5.(2020•盐城)如图,在⊙O中,点A在BC上,∠BOC=100°.则∠BAC= 130 °.

    【分析】根据圆周角定理和圆内接四边形的性质即可得到结论.
    【解析】如图,取⊙O上的一点D,连接BD,CD,
    ∵∠BOC=100°,
    ∴∠D=50°,
    ∴∠BAC=180°﹣50°=130°,
    故答案为:130.

    6.(2020•天水)如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是 83 .

    【分析】根据半径为8,圆心角为120°的扇形弧长,等于圆锥的底面周长,列方程求解即可.
    【解析】设圆锥的底面半径为r,
    由题意得,120π×8180=2πr,
    解得,r=83,
    故答案为:83.
    7.(2020•攀枝花)如图,已知锐角三角形ABC内接于半径为2的⊙O,OD⊥BC于点D,∠BAC=60°,则OD= 1 .

    【分析】连接OB和OC,根据圆周角定理得出∠BOC的度数,再依据等腰三角形的性质得到∠BOD的度数,结合直角三角形的性质可得OD.
    【解析】连接OB和OC,
    ∵△ABC内接于半径为2的⊙O,∠BAC=60°,
    ∴∠BOC=120°,OB=OC=2,
    ∵OD⊥BC,OB=OC,
    ∴∠BOD=∠COD=60°,
    ∴∠OBD=30°,
    ∴OD=12OB=1,
    故答案为:1.

    8.(2020•黑龙江)如图,AD是△ABC的外接圆⊙O的直径,若∠BAD=40°,则∠ACB= 50 °.

    【分析】连接BD,如图,根据圆周角定理即可得到结论.
    【解析】连接BD,如图,
    ∵AD为△ABC的外接圆⊙O的直径,
    ∴∠ABD=90°,
    ∴∠D=90°﹣∠BAD=90°﹣40°=50°,
    ∴∠ACB=∠D=50°.
    故答案为50.

    9.(2020•长沙)已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为 3π .
    【分析】根据圆锥的侧面积公式:S侧=12×2πr•l=πrl.即可得圆锥的侧面展开图的面积.
    【解析】∵圆锥的侧面展开图是扇形,
    ∴S侧=πrl=3×1π=3π,
    ∴该圆锥的侧面展开图的面积为3π.
    故答案为:3π.
    10.(2020•扬州)圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为 4 .
    【分析】根据圆锥的侧面积公式:S侧=12×2πr•l=πrl即可进行计算.
    【解析】∵S侧=πrl,
    ∴3πl=12π,
    ∴l=4.
    答:这个圆锥的母线长为4.
    故答案为:4.
    11.(2020•襄阳)在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于 60°或120 °.
    【分析】根据弦BC垂直平分半径OA,可得OD:OB=1:2,得∠BOC=120°,根据同弧所对圆周角等于圆心角的一半即可得弦BC所对的圆周角度数.
    【解析】如图,

    ∵弦BC垂直平分半径OA,
    ∴OD:OB=1:2,
    ∴∠BOD=60°,
    ∴∠BOC=120°,
    ∴弦BC所对的圆周角等于60°或120°.
    故答案为:60°或120°.
    12.(2020•枣庄)如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B= 27° .

    【分析】直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP=54°,结合圆周角定理得出答案.
    【解析】∵PA切⊙O于点A,
    ∴∠OAP=90°,
    ∵∠P=36°,
    ∴∠AOP=54°,
    ∴∠B=12∠AOP=27°.
    故答案为:27°.
    13.(2020•连云港)用一个圆心角为90°,半径为20cm的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为 5 cm.
    【分析】设这个圆锥的底面圆半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=90π×20180,然后解关于r的方程即可.
    【解析】设这个圆锥的底面圆半径为r,
    根据题意得2πr=90π×20180,
    解得r=5(cm).
    故答案为:5.
    14.(2020•绥化)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是 100 度.
    【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式得到2π•2.5=nπ×9180,再解关于n的方程即可.
    【解析】设这个圆锥的侧面展开图的圆心角为n°,
    根据题意得2π•2.5=nπ×9180,解得n=100,
    即这个圆锥的侧面展开图的圆心角为100°.
    故答案为:100.
    15.(2020•苏州)如图,已知AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD.若∠C=40°,则∠B的度数是 25 °.

    【分析】先根据切线的性质得∠OAC=90°,再利用互余计算出∠AOC=90°﹣∠C=50°,由于∠OBD=∠ODB,利用三角形的外角性质得∠OBD=12∠AOC=25°.
    【解析】∵AC是⊙O的切线,
    ∴OA⊥AC,
    ∴∠OAC=90°,
    ∴∠AOC=90°﹣∠C=90°﹣40°=50°,
    ∵OB=OD,
    ∴∠OBD=∠ODB,
    而∠AOC=∠OBD+∠ODB,
    ∴∠OBD=12∠AOC=25°,
    即∠ABD的度数为25°,
    故答案为:25.
    16.(2020•重庆)如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为 4﹣π .(结果保留π)

    【分析】根据勾股定理求出AC,得到OA、OC的长,根据正方形的面积公式、扇形面积公式计算,得到答案.
    【解析】∵四边形ABCD为正方形,
    ∴AB=BC=2,∠DAB=∠DCB=90°,
    由勾股定理得,AC=AB2+BC2=22,
    ∴OA=OC=2,
    ∴图中的阴影部分的面积=22-90π×(2)2360×2=4﹣π,
    故答案为:4﹣π.
    17.(2020•徐州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.若以AC所在直线为轴,把△ABC旋转一周,得到一个圆锥,则这个圆锥的侧面积等于 15π .

    【分析】运用公式s=πlr(其中勾股定理求解得到的母线长l为5)求解.
    【解析】由已知得,母线长l=5,底面圆的半径r为3,
    ∴圆锥的侧面积是s=πlr=5×3×π=15π.
    故答案为:15π.
    18.(2020•徐州)在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为 92+9 .
    【分析】首先过C作CM⊥AB于M,由弦AB已确定,可得要使△ABC的面积最大,只要CM取最大值即可,即可得当CM过圆心O时,CM最大,然后由圆周角定理,证得△AOB是等腰直角三角形,则可求得CM的长,继而求得答案.
    【解析】作△ABC的外接圆⊙O,过C作CM⊥AB于M,

    ∵弦AB已确定,
    ∴要使△ABC的面积最大,只要CM取最大值即可,
    如图所示,当CM过圆心O时,CM最大,
    ∵CM⊥AB,CM过O,
    ∴AM=BM(垂径定理),
    ∴AC=BC,
    ∵∠AOB=2∠ACB=2×45°=90°,
    ∴OM=AM=12AB=12×6=3,
    ∴OA=OM2+AM2=32,
    ∴CM=OC+OM=32+3,
    ∴S△ABC=12AB•CM=12×6×(32+3)=92+9.
    故答案为:92+9.
    19.(2020•荆门)如图所示的扇形AOB中,OA=OB=2,∠AOB=90°,C为AB上一点,∠AOC=30°,连接BC,过C作OA的垂线交AO于点D,则图中阴影部分的面积为 23π-32 .

    【分析】根据扇形的面积公式,利用图中阴影部分的面积=S扇形BOC﹣S△OBC+S△COD进行计算.
    【解析】∵∠AOB=90°,∠AOC=30°,
    ∴∠BOC=60°,
    ∵扇形AOB中,OA=OB=2,
    ∴OB=OC=2,
    ∴△BOC是等边三角形,
    ∵过C作OA的垂线交AO于点D,
    ∴∠ODC=90°,
    ∵∠AOC=30°,
    ∴OD=32OC=3,CD=12OC=1,
    ∴图中阴影部分的面积═S扇形BOC﹣S△OBC+S△COD
    =60⋅π×22360-12×2×2×32+12×3×1
    =23π-32.
    故答案为23π-32.
    20.(2020•徐州)如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为 10 .

    【分析】连接OA,OB,根据圆周角定理得到∠AOB=2∠ADB=36°,于是得到结论.
    【解析】连接OA,OB,
    ∵A、B、C、D为一个正多边形的顶点,O为正多边形的中心,
    ∴点A、B、C、D在以点O为圆心,OA为半径的同一个圆上,
    ∵∠ADB=18°,
    ∴∠AOB=2∠ADB=36°,
    ∴这个正多边形的边数=360°36°=10,
    故答案为:10.

    21.(2020•湘潭)如图,在半径为6的⊙O中,圆心角∠AOB=60°,则阴影部分面积为 6π .

    【分析】直接根据扇形的面积计算公式计算即可.
    【解析】阴影部分面积为60π×62360=6π,
    故答案为:6π.
    22.(2020•鄂州)用一个圆心角为120°,半径为4的扇形制作一个圆锥的侧面,则此圆锥的底面圆的半径为 43 .
    【分析】根据扇形的弧长公式求出弧长,根据圆锥的底面周长等于它的侧面展开图的弧长求出半径.
    【解析】设圆锥底面的半径为r,
    扇形的弧长为:120π×4180=83π,
    ∵圆锥的底面周长等于它的侧面展开图的弧长,
    ∴根据题意得2πr=83π,
    解得:r=43.
    故答案为:43.
    23.(2020•广元)如图,△ABC内接于⊙O,MH⊥BC于点H,若AC=10,AH=8,⊙O的半径为7,则AB= 565 .

    【分析】作直径AD,连接BD,根据圆周角定理得到∠ABD=90°,∠D=∠C,证明△ABD∽△AHC,根据相似三角形的性质解答即可.
    【解析】作直径AD,连接BD,
    ∵AD为直径,
    ∴∠ABD=90°,
    又AH⊥BC,
    ∴∠ABD=∠AHC,
    由圆周角定理得,∠D=∠C,
    ∴△ABD∽△AHC,
    ∴ABAH=ADAC,即AB8=1410,
    解得,AB=565,
    故答案为:565.

    24.(2020•武威)若一个扇形的圆心角为60°,面积为π6cm2,则这个扇形的弧长为 π3 cm(结果保留π).
    【分析】首先根据扇形的面积公式求出扇形的半径,再根据扇形的面积=12lR,即可得出弧长.
    【解析】设扇形的半径为R,弧长为l,
    根据扇形面积公式得;60π⋅R2360=π6,
    解得:R=1,
    ∵扇形的面积=12lR=π6,
    解得:l=13π.
    故答案为:π3.
    25.(2020•凉山州)如图,点C、D分别是半圆AOB上的三等分点,若阴影部分的面积是32π,则半圆的半径OA的长为 3 .

    【分析】连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD的面积,列式计算就可.
    【解析】连接OC、OD、CD.

    ∵△COD和△CBD等底等高,
    ∴S△COD=S△BCD.
    ∵点C,D为半圆的三等分点,
    ∴∠COD=180°÷3=60°,
    ∴阴影部分的面积=S扇形COD,
    ∵阴影部分的面积是32π,
    ∴60π⋅r2360=32π,
    ∴r=3,
    故答案为3.
    26.(2020•泰安)如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是 643π﹣83 .

    【分析】连接OA,易求得圆O的半径为8,扇形的圆心角的度数,然后根据S阴影=S△AOB+S扇形OAD+S扇形ODE﹣S△BCD即可得到结论.
    【解析】连接OA,
    ∵∠ABO=60°,OA=OB,
    ∴△AOB是等边三角形,
    ∵AB=8,
    ∴⊙O的半径为8,
    ∵AD∥OB,
    ∴∠DAO=∠AOB=60°,
    ∵OA=OD,
    ∴∠AOD=60°,
    ∵∠AOB=∠AOD=60°,
    ∴∠DOE=60°,
    ∵DC⊥BE于点C,
    ∴CD=32OD=43,OC=12OD=4,
    ∴BC=8+4=12,
    S阴影=S△AOB+S扇形OAD+S扇形ODE﹣S△BCD
    =12×8×43+2×60π×82360-12×12×43
    =64π3-83
    故答案为64π3-83.

    27.(2020•黑龙江)小明在手工制作课上,用面积为150πcm2,半径为15cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为 10 cm.
    【分析】先根据扇形的面积公式:S=12l•R(l为弧长,R为扇形的半径)计算出扇形的弧长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,利用圆的周长公式计算出圆锥的底面半径.
    【解析】∵S=12l•R,
    ∴12•l•15=150π,解得l=20π,
    设圆锥的底面半径为r,
    ∴2π•r=20π,
    ∴r=10(cm).
    故答案为:10.
    28.(2020•滨州)如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为 55 .

    【分析】根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形的边的比的问题.
    【解析】∵⊙O是正方形ABCD的内切圆,
    ∴AE=12AB,EG=BC;
    根据圆周角的性质可得:∠MFG=∠MEG.
    ∵sin∠MFG=sin∠MEG=DGDE=55,
    ∴sin∠MFG=55.
    故答案为:55.

    29.(2020•德州)若一个圆锥的底面半径是2cm,母线长是6cm,则该圆锥侧面展开图的圆心角是 120 度.
    【分析】根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.
    【解析】圆锥侧面展开图的弧长是:2π×2=4π(cm),
    设圆心角的度数是n度.则nπ×6180=4π,
    解得:n=120.
    故答案为:120.
    30.(2020•哈尔滨)一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是 130 度.
    【分析】根据扇形面积公式S=nπr2360,即可求得这个扇形的圆心角的度数.
    【解析】设这个扇形的圆心角为n°,
    nπ×62360=13π,
    解得,n=130,
    故答案为:130.
    31.(2020•成都)如图,A,B,C是⊙O上的三个点,∠AOB=50°,∠B=55°,则∠A的度数为 30° .

    【分析】首先根据∠B的度数求得∠BOC的度数,然后求得∠AOC的度数,从而求得等腰三角形的底角即可.
    【解析】∵OB=OC,∠B=55°,
    ∴∠BOC=180°﹣2∠B=70°,
    ∵∠AOB=50°,
    ∴∠AOC=∠AOB+∠BOC=70°+50°=120°,
    ∵OA=OC,
    ∴∠A=∠OCA=180°-120°2=30°,
    故答案为:30°.
    32.(2020•甘孜州)如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为 3 .

    【分析】根据垂径定理由CD⊥AB得到CH=12CD=4,再根据勾股定理计算出OH=3.
    【解析】连接OC,
    ∵CD⊥AB,
    ∴CH=DH=12CD=12×8=4,
    ∵直径AB=10,
    ∴OC=5,
    在Rt△OCH中,OH=OC2-CH2=3,
    故答案为3.

    33.(2020•自贡)如图,矩形ABCD中,E是AB上一点,连接DE,将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,在DF上取点O,以O为圆心,OF长为半径作半圆与CD相切于点G.若AD=4,则图中阴影部分的面积为 239 .

    【分析】连接OG,证明△DOG∽△DFC,得出DODF=OGFC,设OG=OF=x,则4-x4=x2,求出圆的半径为43,证明△OFQ为等边三角形,则可由扇形的面积公式和三角形的面积公式求出答案.
    【解析】连接OG,

    ∵将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,
    ∴AD=DF=4,BF=CF=2,
    ∵矩形ABCD中,∠DCF=90°,
    ∴∠FDC=30°,
    ∴∠DFC=60°,
    ∵⊙O与CD相切于点G,
    ∴OG⊥CD,
    ∵BC⊥CD,
    ∴OG∥BC,
    ∴△DOG∽△DFC,
    ∴DODF=OGFC,
    设OG=OF=x,则4-x4=x2,
    解得:x=43,即⊙O的半径是43.
    连接OQ,作OH⊥FQ,
    ∵∠DFC=60°,OF=OQ,
    ∴△OFQ为等边△;同理△OGQ为等边△;
    ∴∠GOQ=∠FOQ=60°,OH=32OQ=233,S扇形OGQ=S扇形OQF,
    ∴S阴影=(S矩形OGCH﹣S扇形OGQ﹣S△OQH)+(S扇形OQF﹣S△OFQ)
    =S矩形OGCH-32S△OFQ=43×233-32(12×43×233)=239.
    故答案为:239.
    34.(2020•重庆)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=23,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为 33-π .(结果保留π)

    【分析】由菱形的性质可得AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,可证△BEO,△DFO是等边三角形,由等边三角形的性质可求∠EOF=60°,由扇形的面积公式和面积和差关系可求解.
    【解析】如图,设连接以点O为圆心,OB长为半径画弧,分别与AB,AD相交于E,F,连接EO,FO,

    ∵四边形ABCD是菱形,∠ABC=120°,
    ∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,
    ∴△ABD是等边三角形,
    ∴AB=BD=23,∠ABD=∠ADB=60°,
    ∴BO=DO=3,
    ∵以点O为圆心,OB长为半径画弧,
    ∴BO=OE=OD=OF,
    ∴△BEO,△DFO是等边三角形,
    ∴∠DOF=∠BOE=60°,
    ∴∠EOF=60°,
    ∴阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)=2×(34×12-34×3-34×3-60°×π×3360°)=33-π,
    故答案为:33-π.
    35.(2020•台州)如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为 55° .

    【分析】由直径所对的圆周角为直角得∠AED=90°,由切线的性质可得∠ADC=90°,然后由同角的余角相等可得∠C=∠ADE=55°.
    【解析】∵AD为⊙O的直径,
    ∴∠AED=90°,
    ∴∠ADE+∠DAE=90°;
    ∵⊙O与BC相切,
    ∴∠ADC=90°,
    ∴∠C+∠DAE=90°,
    ∴∠C=∠ADE,
    ∵∠ADE=55°,
    ∴∠C=55°.
    故答案为:55°.
    36.(2020•嘉兴)如图,在半径为2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为 π ;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为 12 .

    【分析】由勾股定理求扇形的半径,再根据扇形面积公式求值;根据扇形的弧长等于底面周长求得底面半径即可.
    【解析】连接BC,
    由∠BAC=90°得BC为⊙O的直径,
    ∴BC=22,
    在Rt△ABC中,由勾股定理可得:AB=AC=2,
    ∴S扇形ABC=90π×4360=π;
    ∴扇形的弧长为:90π×2180=π,
    设底面半径为r,则2πr=π,
    解得:r=12,
    故答案为:π,12.

    37.(2020•株洲)据《汉书律历志》记载:“量者,龠(yuè)、合、升、斗、斛(hú)也”斛是中国古代的一种量器,“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形的外接一个圆,此圆外是一个同心圆”,如图所示.
    问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的周长为 42 尺.(结果用最简根式表示)

    【分析】根据正方形性质确定△CDE为等腰直角三角形,CE为直径,根据题意求出正方形外接圆的直径CE,求出CD,问题得解.
    【解析】如图,

    ∵四边形CDEF为正方形,
    ∴∠D=90°,CD=DE,
    ∴CE为直径,∠ECD=45°,
    由题意得AB=2.5,
    ∴CE=2.5﹣0.25×2=2,
    ∴CD=CE⋅cos∠ECD=2×22=2,
    ∴∠ECD=45°,
    ∴正方形CDEF周长为42尺.
    故答案为:42.
    38.(2020•广东)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 13 m.

    【分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.
    【解析】由题意得,阴影扇形的半径为1m,圆心角的度数为120°,
    则扇形的弧长为:120π×1180,
    而扇形的弧长相当于围成圆锥的底面周长,因此有:
    2πr=120π×1180,
    解得,r=13,
    故答案为:13.
    39.(2020•牡丹江)AB是⊙O的弦,OM⊥AB,垂足为M,连接OA.若△AOM中有一个角是30°,OM=23,则弦AB的长为 12或4 .
    【分析】分∠OAM=30°,∠AOM=30°,两种情况分别利用正切的定义求解即可.
    【解析】∵OM⊥AB,
    ∴AM=BM,
    若∠OAM=30°,
    则tan∠OAM=OMAM=23AM=33,
    ∴AM=6,
    ∴AB=2AM=12;

    若∠AOM=30°,
    则tan∠AOM=AMOM=AM23=33,
    ∴AM=2,
    ∴AB=2AM=4.

    故答案为:12或4.
    40.(2020•福建)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为 4π .(结果保留π)
    【分析】利用扇形的面积公式计算即可.
    【解析】S扇形=90⋅π⋅42360=4π,
    故答案为4π.
    41.(2020•南京)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为 23 cm2.

    【分析】连接BF,BE,过点A作AT⊥BF于T,证明S△PEF=S△BEF,求出△BEF的面积即可.
    【解析】连接BF,BE,过点A作AT⊥BF于T

    ∵ABCDEF是正六边形,
    ∴CB∥EF,AB=AF,∠BAF=120°,
    ∴S△PEF=S△BEF,
    ∵AT⊥BE,AB=AF,
    ∴BT=FT,∠BAT=∠FAT=60°,
    ∴BT=FT=AB•sin60°=3,
    ∴BF=2BT=23,
    ∵∠AFE=120°,∠AFB=∠ABF=30°,
    ∴∠BFE=90°,
    ∴S△PEF=S△BEF=12•EF•BF=12×2×23=23,
    故答案为23.
    42.(2020•泰州)如图所示的网格由边长为1个单位长度的小正方形组成,点A、B、C在直角坐标系中的坐标分别为(3,6),(﹣3,3),(7,﹣2),则△ABC内心的坐标为 (2,3) .

    【分析】根据点A、B、C在直角坐标系中的坐标分别为(3,6),(﹣3,3),(7,﹣2),建立直角坐标系,根据等腰三角形三线合一,利用网格确定△ABC内心的坐标即可.
    【解析】如图,点I即为△ABC的内心.

    所以△ABC内心I的坐标为(2,3).
    故答案为:(2,3).
    43.(2020•扬州)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a= 3 cm.

    【分析】根据正六边形的性质,可得∠ABC=120°,AB=BC=a,根据等腰三角形的性质,可得CD的长,根据锐角三角函数的余弦,可得答案.
    【解析】如图,连接AC,过点B作BD⊥AC于D,
    由正六边形,得
    ∠ABC=120°,AB=BC=a,
    ∠BCD=∠BAC=30°.
    由AC=3,得CD=1.5.
    cos∠BCD=CDBC=32,即1.5a=32,
    解得a=3,
    故答案为:3.

    44.(2020•连云港)如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α= 48 °.

    【分析】延长A1A2交A4A3的延长线于C,设l交A1A2于E、交A4A3于D,由正六边形的性质得出∠A1A2A3=∠A2A3A4=120°,得出∠CA2A3=∠A2A3C=60°,则∠C=60°,由正五边形的性质得出∠B2B3B4=108°,由平行线的性质得出∠EDA4=∠B2B3B4=108°,则∠EDC=72°,再由三角形内角和定理即可得出答案.
    【解析】延长A1A2交A4A3的延长线于C,设l交A1A2于E、交A4A3于D,如图所示:
    ∵六边形A1A2A3A4A5A6是正六边形,六边形的内角和=(6﹣2)×180°=720°,
    ∴∠A1A2A3=∠A2A3A4=720°6=120°,
    ∴∠CA2A3=∠A2A3C=180°﹣120°=60°,
    ∴∠C=180°﹣60°﹣60°=60°,
    ∵五边形B1B2B3B4B5是正五边形,五边形的内角和=(5﹣2)×180°=540°,
    ∴∠B2B3B4=540°5=108°,
    ∵A3A4∥B3B4,
    ∴∠EDA4=∠B2B3B4=108°,
    ∴∠EDC=180°﹣108°=72°,
    ∴α=∠CED=180°﹣∠C﹣∠EDC=180°﹣60°﹣72°=48°,
    故答案为:48.

    45.(2020•泰州)如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为 3cm或5cm .

    【分析】当点O在点H的左侧⊙O与直线a相切时,OP=PH﹣OH;当点O在点H的右侧⊙O与直线a相切时,OP=PH+OH,即可得出结果.
    【解析】∵直线a⊥b,O为直线b上一动点,
    ∴⊙O与直线a相切时,切点为H,
    ∴OH=1cm,
    当点O在点H的左侧,⊙O与直线a相切时,如图1所示:

    OP=PH﹣OH=4﹣1=3(cm);
    当点O在点H的右侧,⊙O与直线a相切时,如图2所示:

    OP=PH+OH=4+1=5(cm);
    ∴⊙O与直线a相切,OP的长为3cm或5cm,
    故答案为:3cm或5cm.
    46.(2020•绥化)如图,正五边形ABCDE内接于⊙O,点P为DE上一点(点P与点D,点E不重合),连接PC、PD,DG⊥PC,垂足为G,∠PDG等于 54 度.

    【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理得出∠CPD的度数,由三角形内角和定理即可得出结果.
    【解析】连接OC、OD,如图所示:
    ∵ABCDE是正五边形,
    ∴∠COD=360°5=72°,
    ∴∠CPD=12∠COD=36°,
    ∵DG⊥PC,
    ∴∠PGD=90°,
    ∴∠PDG=90°﹣∠CPD=90°﹣36°=54°,
    故答案为:54.

    47.(2020•成都)如图,六边形ABCDEF是正六边形,曲线FA1B1C1D1E1F1…叫做“正六边形的渐开线”,FA1,A1B1,B1C1,C1D1,D1E1,E1F1,…的圆心依次按A,B,C,D,E,F循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线FA1B1C1D1E1F1的长度是 7π .

    【分析】利用弧长公式计算即可解决问题.
    【解析】FA1的长=60⋅π⋅1180=π3,
    A1B1的长=60⋅π⋅2180=2π3,
    B1C1的长=60⋅π⋅3180=3π3,
    C1D1的长=60⋅π⋅4180=4π3,
    D1E1的长=60⋅π⋅5180=5π3,
    E1F1的长=60⋅π⋅6180=6π3,
    ∴曲线FA1B1C1D1E1F1的长度=π3+2π3+⋯+6π3=21π3=7π,
    故答案为7π.
    48.(2020•贵阳)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是 120 度.

    【分析】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.
    【解析】连接OA,OB,
    ∵△ABC是⊙O的内接正三角形,
    ∴∠AOB=120°,
    ∵OA=OB,
    ∴∠OAB=∠OBA=30°,
    ∵∠CAB=60°,
    ∴∠OAD=30°,
    ∴∠OAD=∠OBE,
    ∵AD=BE,
    ∴△OAD≌△OBE(SAS),
    ∴∠DOA=∠BOE,
    ∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°,
    故答案为:120.

    49.(2020•上海)在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是 103<AO<203 .
    【分析】根据勾股定理得到AC=10,如图1,设⊙O与AD边相切于E,连接OE,如图2,设⊙O与BC边相切于F,连接OF,根据相似三角形的性质即可得到结论.
    【解析】在矩形ABCD中,∵∠D=90°,AB=6,BC=8,
    ∴AC=10,
    如图1,设⊙O与AD边相切于E,连接OE,
    则OE⊥AD,
    ∴OE∥CD,
    ∴△AOE∽△ACD,
    ∴OECD=AOAC,
    ∴AO10=26,
    ∴AO=103,
    如图2,设⊙O与BC边相切于F,连接OF,
    则OF⊥BC,
    ∴OF∥AB,
    ∴△COF∽△CAB,
    ∴OCAC=OFAB,
    ∴OC10=26,
    ∴OC=103,
    ∴AO=203,
    ∴如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是103<AO<203,
    故答案为:103<AO<203.


    50.(2020•南充)△ABC内接于⊙O,AB为⊙O的直径,将△ABC绕点C旋转到△EDC,点E在⊙O上,已知AE=2,tanD=3,则AB= 103 .

    【分析】根据圆周角定理得到∠AEB=∠ACB=90°,根据旋转的性质得到AC=CE,BC=CD,∠ACE=∠BCD,∠ECD=∠ACB=90°,设CE=3x,CD=x,由勾股定理得到DE=10x,根据相似三角形的性质得到BD=23根据勾股定理即可得到结论.
    【解析】∵AB为⊙O的直径,
    ∴∠AEB=∠ACB=90°,
    ∵将△ABC绕点C旋转到△EDC,
    ∴AC=CE,BC=CD,∠ACE=∠BCD,∠ECD=∠ACB=90°,
    ∵tanD=CECD=3,
    ∴设CE=3x,CD=x,
    ∴DE=10x,
    ∵∠ACE=∠BCD,∠D=∠ABC=∠AEC,
    ∴△ACE∽△DCB,
    ∴ACBC=CECD=AEBD=3,
    ∵AE=2,
    ∴BD=23
    ∴BE=DE﹣BD=10x-23,
    ∵AE2+BE2=AB2,
    ∴22+(10x-23)2=(10x)2,
    ∴x=103,
    ∴AB=DE=103,
    故答案为:103.

    相关试卷

    专题27 概率(共50题)-2023年全国各地中考数学真题分项汇编(全国通用): 这是一份专题27 概率(共50题)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题27概率共50题原卷版docx、专题27概率共50题解析版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。

    专题27 概率(共50题)-2023年中考数学真题分项汇编(全国通用): 这是一份专题27 概率(共50题)-2023年中考数学真题分项汇编(全国通用),文件包含专题27概率共50题原卷版docx、专题27概率共50题解析版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。

    专题2整式及运算(共50题)-2021年中考数学真题分项汇编(解析版)【全国通用】: 这是一份专题2整式及运算(共50题)-2021年中考数学真题分项汇编(解析版)【全国通用】,共31页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题21圆填空题(共50道)-2020年中考数学真题分项汇编(解析版)【全国通用】
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map