2021年全国中考数学真题分类汇编--四边形:矩形、菱形、正方形(试卷版)
展开2021全国中考真题分类汇编(四边形)
----矩形、菱形、正方形
一、选择题
1. (2021·安徽省)如图,在菱形ABCD中,,,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为( )
A. B. C. D.
2.(2021•海南省)如图,在菱形ABCD中,点E、F分别是边BC、CD的中点,连接AE、AF、EF.若菱形ABCD的面积为8,则△AEF的面积为( )
A.2 B.3 C.4 D.5
3. (2021•重庆市A)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O做ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为( )
A. 1 B. C. 2 D.
4. (2021•四川省成都市).如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是( )
A.BE=DF B.∠BAE=∠DAF C.AE=AD D.∠AEB=∠AFD
5. (2021•四川省南充市)如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,AE=BF=2,△DEF的周长为3,则AD的长为( )
A. B.2 C.+1 D.2﹣1
6.(2021•广西玉林市)一个四边形顺次添加下列中的三个条件便得到正方形:
a.两组对边分别相等 b.一组对边平行且相等
c.一组邻边相等 d.一个角是直角
顺次添加的条件:①a→c→d ②b→d→c ③a→b→c则正确的是:( )
A. 仅① B. 仅③ C. ①② D. ②③
7. (2021•浙江省宁波市) 如图是一个由5张纸片拼成的,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为,另两张直角三角形纸片的面积都为,中间一张矩形纸片的面积为,与相交于点O.当的面积相等时,下列结论一定成立的是( )
A B. C. D.
8. (2021•浙江省温州市)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG于点H.若AE=2BE,则( )
A. B. C. D.
9. (2021•重庆市B)如图,把含30°的直角三角板PMN放置在正方形ABCD中,∠PMN=30°,直角顶点P在正方形ABCD的对角线BD上,点M,N分别在AB和CD边上,MN与BD交于点O,且点O为MN的中点,则∠AMP的度数为( )
A.60° B.65° C.75° D.80°
10.(2021•湖北省江汉油田)如图,在正方形中,,E为对角线上与A,C不重合的一个动点,过点E作于点F,于点G,连接.下列结论:
①;②;③;④的最小值为3.其中正确结论的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
11.(2021•内蒙古包头市)如图,在中,,和关于直线BC对称,连接AD,与BC相交于点O,过点C作,垂足为C,与AD相交于点E.若,,则值为( )
A. B. C. D.
12.(2021•深圳)在矩形中,,点E是边的中点,连接,延长至点F,使得,过点F作,分别交、于N、G两点,连接、、,下列正确的是( )
①; ②; ③; ④.
A.4 B.3 C.2 D.1
二.填空题
1. (2021•湖南省衡阳市)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为O﹣A﹣D﹣O,点Q的运动路线为O﹣C﹣B﹣O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A﹣D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为 厘米.
2. (2021•长沙市)如图,菱形的对角线,相交于点,点是边的中点,若,则的长为______.
3. (2021•株洲市)《蝶几图》是明朝人戈汕所作一部组合家具的设计图(蜨,同“蝶”),它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,共十三只(图①中的“様”和“隻”为“样”和“只”).图②为某蝶几设计图,其中和为“大三斜”组件(“一様二隻”的大三斜组件为两个全等的等腰直角三角形),已知某人位于点处,点与点关于直线对称,连接、.若,则 ___________度.
4.(2021•株洲市)如图所示,线段BC为等腰△ABC的底边,矩形ADBE的对角线AB与DE交于点O,若OD=2,则AC=__________.
5. (2021•江苏省连云港)如图,菱形的对角线、相交于点O,,垂足为E,,,则的长为______.
6. (2021•江苏省苏州市)如图,四边形ABCD为菱形,∠ABC = 70°,延长BC到E,在∠DCE内作射线CM,使得∠ECM = 15°,过点D作DF⊥CM,垂足为F.若DF =,则对角线BD的长为 ▲ .(结果保留根号)
7. (2021•上海市) 定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为__________.
8. (2021•山西)如图,在菱形 ABCD 中,对角线 AC、BD 相交于点 O,BD=8,AC=6,OE//AB,交 BC 于点 E,则 OE 的长为
9. (2021•四川省凉山州)菱形中,对角线,则菱形的高等于___________.
10. (2021•泸州市)如图,在边长为4的正方形ABCD中,点E是BC的中点,点F在CD上,且CF=3BF,AE,BF相交于点G,则AGF的面积是________.
11. (2021•四川省南充市)如图,点E是矩形ABCD边AD上一点,点F,G,H分别是BE,BC,CE的中点,AF=3,则GH的长为 .
12.(2021•青海省)如图,正方形ABCD的边长为8,点M在DC上且DM=2,N是AC上的一动点,则DN+MN的最小值是 .
13.(2021•浙江省绍兴市)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD的对角线BD上,则BC长为 cm(结果保留根号).
14.(2021•浙江省台州)如图,点E, F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=_____.
15.(2021•湖北省十堰市)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为_______.
16.(2021•北京市)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是 (写出一个即可).
17.(2021•广西贺州市)如图,在矩形中,,分别为,的中点,以为斜边作,,连接,.若,则________.
18. (2021•呼和浩特市)已知菱形的面积为﹐点E是一边上的中点,点P是对角线上的动点.连接,若AE平分,则线段与的和的最小值为最__________,最大值为__________.
19. (2021•内蒙古包头市) 如图,BD是正方形ABCD的一条对角线,E是BD上一点,F是CB延长线上一点,连接CE,EF,AF.若,,则的度数为__________.
20. (2021•襄阳市)如图,正方形的对角线相交于点,点在边上,点在的延长线上,,交于点,,,则______.
21. (2021•贵州省贵阳市)如图,在平面直角坐标系中,菱形ABCD对角线的交点坐标是O(0,0),点B的坐标是(0,1),且BC=,则点A的坐标是 .
22. (2021•绥化市)在边长为4的正方形中,连接对角线,点是正方形边上或对角线上的一点,若,则______.
23.(2021•四川省眉山市)如图,在菱形ABCD中,AB=AC=10,对角线AC、BD相交于点O,点M在线段AC上,且AM=3,点P为线段BD上的一个动点,则MP+PB的最小值是 .
三、解答题
1. 如图,的对角线,相交于点,是等边三角形,.
(1)求证:是矩形;
(2)求的长.
2. (2021•株洲市)如图所示,在矩形中,点在线段上,点在线段的延长线上,连接交线段于点,连接,若.
(1)求证:四边形是平行四边形;
(2)若,求线段的长度.
3. (2021•湖南省衡阳市)如图,点E为正方形ABCD外一点,∠AEB=90°,将Rt△ABE绕A点逆时针方向旋转90°得到△ADF,DF的延长线交BE于H点.
(1)试判定四边形AFHE的形状,并说明理由;
(2)已知BH=7,BC=13,求DH的长.
4. (2021•湖南省邵阳市)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.
(1)证明:△ADE≌△CBF.
(2)若AB=4,AE=2,求四边形BEDF的周长.
5. (2021•江苏省连云港)如图,点C是的中点,四边形是平行四边形.
(1)求证:四边形是平行四边形;
(2)如果,求证:四边形是矩形.
6. (2021•江苏省扬州)如图,在中,的角平分线交于点D,.
(1)试判断四边形的形状,并说明理由;
(2)若,且,求四边形的面积.
7. (2021•山东省泰安市)四边形ABCD为矩形,E是AB延长线上的一点.
(1)若AC=EC,如图1,求证:四边形BECD为平行四边形;
(2)若AB=AD,点F是AB上的点,AF=BE,EG⊥AC于点G,如图2,求证:△DGF是等腰直角三角形.
8. (2021•遂宁市)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,过点O的直线EF与BA、DC的延长线分别交于点E、F.
(1)求证:AE=CF;
(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.
9. (2021•四川省自贡市) 如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.
10. (2021•湖北省恩施州))如图,矩形ABCD的对角线AC,BD交于点O,且DE∥AC,AE∥BD,连接OE.求证:OE⊥AD.
11. (2021•浙江省金华市)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.
(1)求矩形对角线的长.
(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.
12. (2021•江苏省盐城市)如图,D、E、F分别是△ABC各边的中点,连接DE、EF、AE.
(1)求证:四边形ADEF为平行四边形;
(2)加上条件 后,能使得四边形ADEF为菱形,请从①∠BAC=90°;②AE平分∠BAC;③AB=AC这三个条件中选择1个条件填空(写序号),并加以证明.
13. (2021•湖北省十堰市)如图,已知中,D是的中点,过点D作交于点E,过点A作交于点F,连接、.
(1)求证:四边形菱形;
(2)若,求的长.
14. (2021•湖南省张家界市)如图,在矩形中,对角线与相交于点,,对角线所在的直线绕点顺时针旋转角(),所得的直线分别交,于点,.
(1)求证:≌;
(2)当旋转角为多少度时,四边形为菱形?试说明理由.
15. (2021•福建省)如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A′,AA′的延长线交BC于点G.
(1)求证:DE∥A′F;
(2)求∠GA′B的大小;
(3)求证:A′C=2A′B.
16. (2021•襄阳市) 如图,为的对角线.
(1)作对角线的垂直平分线,分别交,,于点,,(尺规作图,不写作法,保留作图痕迹);
(2)连接,.求证:四边形为菱形.
17.(2021•吉林省长春市)实践与探究
操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则 度.
操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则 度.
在图②中,运用以上操作所得结论,解答下列问题:
(1)设AM与NF的交点为点P.求证:.
(2)若,则线段AP的长为 .
18. (2021•贵州省贵阳市)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.
(1)求证:△ABN≌△MAD;
(2)若AD=2,AN=4,求四边形BCMN的面积.
19.(2021•呼和浩特市)如图,四边形是平行四边形,且分别交对角线于点E,F.
(1)求证:;
(2)当四边形分别是矩形和菱形时,请分别说出四边形的形状(无需说明理由)
2023年全国各地中考数学真题分类汇编之矩形菱形正方形(含解析): 这是一份2023年全国各地中考数学真题分类汇编之矩形菱形正方形(含解析),共46页。试卷主要包含了单选题,解答题,填空题等内容,欢迎下载使用。
专题18 矩形菱形正方形- 2023年中考数学真题分类汇编(通用版含解析): 这是一份专题18 矩形菱形正方形- 2023年中考数学真题分类汇编(通用版含解析),文件包含专题18矩形菱形正方形共39题解析版docx、专题18矩形菱形正方形共39题原卷版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
2023年中考数学真题分类汇编——专题18 矩形菱形正方形(全国通用): 这是一份2023年中考数学真题分类汇编——专题18 矩形菱形正方形(全国通用),文件包含专题18矩形菱形正方形解析版docx、专题18矩形菱形正方形原卷版docx等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。