![3.1.2弧度制_课件1-高中数学湘教版必修2第1页](http://img-preview.51jiaoxi.com/3/3/12056340/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![3.1.2弧度制_课件1-高中数学湘教版必修2第2页](http://img-preview.51jiaoxi.com/3/3/12056340/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![3.1.2弧度制_课件1-高中数学湘教版必修2第3页](http://img-preview.51jiaoxi.com/3/3/12056340/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![3.1.2弧度制_课件1-高中数学湘教版必修2第4页](http://img-preview.51jiaoxi.com/3/3/12056340/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![3.1.2弧度制_课件1-高中数学湘教版必修2第5页](http://img-preview.51jiaoxi.com/3/3/12056340/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![3.1.2弧度制_课件1-高中数学湘教版必修2第6页](http://img-preview.51jiaoxi.com/3/3/12056340/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![3.1.2弧度制_课件1-高中数学湘教版必修2第7页](http://img-preview.51jiaoxi.com/3/3/12056340/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![3.1.2弧度制_课件1-高中数学湘教版必修2第8页](http://img-preview.51jiaoxi.com/3/3/12056340/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
高中3.1弧度制与任意角教课内容ppt课件
展开
这是一份高中3.1弧度制与任意角教课内容ppt课件,共24页。PPT课件主要包含了自学导引,终边的旋转方向,自主探究,预习测评,答案A,名师点睛,典例剖析等内容,欢迎下载使用。
角的单位制(1)角度制:规定周角的 为1度的角,用度作为单位来度量角的单位制叫做角度制.(2)弧度制:单位圆上长度为1的圆弧所对的圆心角取为度量的单位,称作弧度(radian),这样的单位制称为弧度制(radian measure).
(3)角的弧度数求法:如果半径为r的圆的圆心角α=x弧度所对的弧长为l,那么l,x,r之间存在的关系是: ;这里x的正负由角α的__________________决定.正角的弧度数是一个____,负角的弧度数是一个____,零角的弧度数是__.角度与弧度的互化(1)周角=360°=2π弧度; _______ 弧度,
扇形的弧长及面积公式设扇形的半径为r,弧长为l,α(0<α<2π)为其圆心角,则
下列叙述中,正确的是 ( ).A.1弧度是1度的圆心角所对的弧B.1弧度是长度为半径的弧C.1弧度是1度的弧与1度的角之和D.1弧度是长度等于半径长的弧所对的圆心角,它是角 的一种度量单位答案 D
一条弦长等于圆的半径,则这条弦所对的圆心角的弧度数是 ( ).
在半径为2的圆中,圆心角为 所对的弧长是________.
α=kπ+ (k∈Z)表示的角的终边在________上.答案 y轴
弧度制的有关概念关于弧度制的理解,主要明确如下几点:
(3)无论是以“弧度”还是以“度”为单位,角的大小都是一个与“半径”大小无关的定值,“弧度”或“度”仅仅是为了能使角的概念描述得更具体而设置的一个“过渡量”,这对于推广角的概念有积极的意义.角度制与弧度制的区别与联系(1)用弧度为单位表示角的大小时,“弧度”两字可以省略不写,这时弧度数在形式上虽是一个不名数,但我们应当把它理解为名数,如sin2是指sin(2弧度),π=180°是指π弧度=180°;但如果以度“°”为单位表示角时,度“°”就不能省去.
(2)弧度制和角度制一样,只是一种度量角的方法.弧度制与角度制相比有一定的优点.其一是在进位上,角度制在度、分、秒上是60进位制,不便于计算,而弧度制是十进位制,给运算带来方便;其二是在弧长公式与扇形面积公式的表达上,弧度制下的公式远比角度制下的公式简单,运用起来方便.(3)需注意的一个问题,在今后表示角的时候,由于弧度制的优点,常常使用弧度制表示角,但也要注意,用弧度制表示角时,不能与角度制混用,例如:α=2kπ+30°(k∈Z),β=k·360°+ π(k∈Z)都是不允许的.
(1)将下列各角度化成弧度:①1 080°;②-750°;(2)将下列各弧度化成角度:①- ;② .
题型一 角度制与弧度制的换算
用弧度制表示顶点在原点,始边重合于x轴的非负半轴,终边落在阴影部分内的角的集合(不包括边界,如图)
题型二 弧度制表示角的范围
点评 首先可以利用弧度制与角度制间的关系将有关角化为弧度数,同时在表示所给角的范围时还要注意正角和负角之间的转化.
用弧度制表示第二象限角的集合为________.
解答下列各题:(1)已知扇形的周长为10 cm,面积为4 cm2,求扇形圆心角的弧度数;(2)已知一扇形的周长为40 cm,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解 (1)设扇形圆心角的弧度数为θ(0
相关课件
这是一份高中数学4.4向量的分解与坐标表示多媒体教学课件ppt,共36页。PPT课件主要包含了实数倍之和,a=x,b=y,λxλy,减去始点的坐标,v=xe1+ye2,a=x且b=y等内容,欢迎下载使用。
这是一份数学湘教版4.3向量与实数相乘备课课件ppt,共27页。PPT课件主要包含了自学导引,相同或相反,任意的,自主探究,预习测评,名师点睛,题型一向量的运算,典例剖析,题型三共线问题等内容,欢迎下载使用。
这是一份湘教版必修24.1什么是向量背景图ppt课件,共24页。PPT课件主要包含了自学导引,长度相等,自主探究,预习测评,答案D,答案相等,名师点睛,典例剖析等内容,欢迎下载使用。