搜索
    上传资料 赚现金
    英语朗读宝

    第7讲 应用题-2021年中考数学二轮复习重点题型针对训练(北师大版)

    第7讲 应用题-2021年中考数学二轮复习重点题型针对训练(北师大版)第1页
    第7讲 应用题-2021年中考数学二轮复习重点题型针对训练(北师大版)第2页
    第7讲 应用题-2021年中考数学二轮复习重点题型针对训练(北师大版)第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第7讲 应用题-2021年中考数学二轮复习重点题型针对训练(北师大版)

    展开

    这是一份第7讲 应用题-2021年中考数学二轮复习重点题型针对训练(北师大版),共10页。教案主要包含了方法梳理,强化巩固练习,参考答案等内容,欢迎下载使用。
    1.初中解应用题的唯一方法→→审透等量关系式(用中文语言描述两个变量间的等量关系,直到不能用中文而只能用数字或未知数回答为止)
    2.列式的解题技巧:假设数字,只列式不计算,最后用未知数替换即可;
    2.注意以下常用等量关系式
    ①利润问题:
    标价=成本+利润=成本×(1+利润率); 单个利润=标价标价×折扣-成本=成本×利润率;
    总利润=单个利润×销量; 销量=原销量±每涨(降)1元影响的销量×涨(降)几元
    ②行程问题:路程÷速度=时间
    ③工程问题:工作总量=工作效率×工作时间(单个);工作总量=工作效率和×合作时间=各自工作总量之和.
    【强化巩固练习】
    1.某种商品原价是100元,经两次降价后的价格是90元,设平均每次降价的百分率是x,可列方程为( )
    A. 1001-2x=90 B. 1001-x2=90 C. 1001-x=90 D. 100(1-x)2=90
    2.某公司今年的产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年的总产值就达到了1400万元.设这个百分数为x,则可列方程为( )
    A.200(1+x)2=1400 B.200+200(1+x)+200(1+x)2=1400 C.1400(1﹣x)2=200 D.200(1+x)3=1400
    3.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )
    A. xx+1=1035 B. 12xx-1=1035 C. 12xx+1=1035 D. xx-1=1035
    4.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )
    A.12x(x﹣1)=45B.12x(x+1)=45C.x(x﹣1)=45 D.x(x+1)=45
    5.深圳市某商场销售某女款上衣,刚上市时每件可盈利100元,销售一段时间后开始滞销,经过连续两次降价后,每件盈利81元,平均每天可售出20件.
    (1)求平均每次降价的百分率;
    (2)为扩大销售量,尽快减少库存,在“双十一“期间该商场决定再次采取适当的降价措施,经调查发现,一件上衣每降价1元,每天可多售出2件,若商场每天要盈利2940元,则每件应降价多少元?
    6.某网店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场调查发现,当每个背包的售价为40元时,月均销售量为280个,售价每增长2元,月均销量相应减少20个.
    (1)若使这种背包的月均销量不低于130个,每个背包售价应不高于多少元?
    (2)在(1)的条件下,当该种书包销售单价为多少元时,销售利润是3120元?
    (3)这种书包的销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由;
    7.暑假期间,某商场购进一批价格为40元的文化衫,根据市场预测,每件文化衫售价为60元时,每周可售出150件,售价每上涨10元,销售量将减少5件,为了维护消费者的利益,物件部门规定,该文化衫的售价不能超过进价的2倍。该商场为了确保这批文化衫每周的销售利润为5600元,每件文化衫应定价多少元?
    8. 某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
    (1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
    (2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
    (3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)
    9.为推进“世界著名花城”建设,深圳多个公园近期举办花展活动.某公园想用一段长为80米的篱笆,围成一个一边靠围墙的矩形花圃ABCD,墙长36米.
    (1)当AB长为多少米时所围成的花圃面积最大?最大值是多少?
    (2)当花圃的面积为350平方米时,AB长为多少米?
    10. 在新冠肺炎抗疫期间,某药店决定销售一批口罩,经市场调研:某类型口罩进价每包为20元,当售价为每包24元时,周销售量为160包,若售价每提高1元,周销售量就会减少10包.设该类型售价为x元(不低于进价),周利润为y元.请解答以下问题:
    (1)求y与x的函数关系式?(要求关系式化为一般式)
    (2)该药店为了获得周利润750元,且让利给顾客,售价应为多少元?
    (3)物价局要求利润不得高于45%,当售价定为多少时,该药店获得利润最大,最大利润是多少元?
    11.某公司经销一种绿茶,每千克成本为50元,市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240,设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
    (1)求y与x的关系式;
    (2)当x取何值时,y的值最大?
    (3)若物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
    12.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成
    一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
    (1)若花园的面积为192m2,求x的值;
    (2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
    【参考答案】
    1.某种商品原价是100元,经两次降价后的价格是90元,设平均每次降价的百分率是x,可列方程为( )
    A. 1001-2x=90 B. 1001-x2=90 C. 1001-x=90 D. 100(1-x)2=90
    【解析】
    解题方法:直接套用公式“a(1±x)2=b”,选D
    2.某公司今年的产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年的总产值就达到了1400万元.设这个百分数为x,则可列方程为( )
    A.200(1+x)2=1400 B.200+200(1+x)+200(1+x)2=1400 C.1400(1﹣x)2=200 D.200(1+x)3=1400
    【解析】
    注意等量关系式:前年产值+去年产值+今年产值=1400,故选B
    3.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )
    A. xx+1=1035 B. 12xx-1=1035 C. 12xx+1=1035 D. xx-1=1035
    【解析】
    自己送别人与别人送自己的照片不同,不存在重复问题,不用÷2,选D
    4.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )
    A.12x(x﹣1)=45B.12x(x+1)=45C.x(x﹣1)=45 D.x(x+1)=45
    【解析】
    甲与乙比赛、乙与甲的比赛是同一场比赛,存在重复,要÷2,选A
    5.深圳市某商场销售某女款上衣,刚上市时每件可盈利100元,销售一段时间后开始滞销,经过连续两次降价后,每件盈利81元,平均每天可售出20件.
    (1)求平均每次降价的百分率;
    (2)为扩大销售量,尽快减少库存,在“双十一“期间该商场决定再次采取适当的降价措施,经调查发现,一件上衣每降价1元,每天可多售出2件,若商场每天要盈利2940元,则每件应降价多少元?
    【解析】
    (1)设平均每次降价的百分率为x,由题意可得:
    100(1-x)2=81,
    解得x=0.1=10%或x=1.9(舍去)
    (2)设每件应降价y元,由题意可得:
    (81-x)(20+2x)=2940,
    解得x=11或x=60,
    ∵为扩大销售量,尽快减少库存,
    ∴x=60,
    即每件应降价60元
    6.某网店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场调查发现,当每个背包的售价为40元时,月均销售量为280个,售价每增长2元,月均销量相应减少20个.
    (1)若使这种背包的月均销量不低于130个,每个背包售价应不高于多少元?
    (2)在(1)的条件下,当该种书包销售单价为多少元时,销售利润是3120元?
    (3)这种书包的销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由;
    【解析】
    (1)设每个背包售价为x元,依不等关系式“原销量-因涨价减少的销量≥130”,可列不等式为:
    280-202(x-40)≥130,
    解得x≤55,
    ∴每个背包应不高于55元.
    (2)依等量关系式“(每个背包售价-成本)×销量=3120”可列方程为:(x-30)[280- 202(x-40)]=3120,
    化简为x2-98x+2352=0,
    解得x=56或42,
    ∵x≤55,
    ∴x=42,
    ∴当该种书包销售单价为42元时,销售利润是3120元.
    (3)依(2)的等量关系式可列方程为:(x-30)[280- 202(x-40)]=3700,化简为x2-98x+2410=0,∵△=982-4×2740=-36

    相关教案

    第12讲 圆综合压轴题-2021年中考数学二轮复习重点题型针对训练(北师大版):

    这是一份第12讲 圆综合压轴题-2021年中考数学二轮复习重点题型针对训练(北师大版),共23页。教案主要包含了方法梳理,强化巩固练习,答案详解等内容,欢迎下载使用。

    第11讲 几何动态问题-2021年中考数学二轮复习重点题型针对训练(北师大版):

    这是一份第11讲 几何动态问题-2021年中考数学二轮复习重点题型针对训练(北师大版),共14页。教案主要包含了方法梳理,巩固强化练习,答案详解等内容,欢迎下载使用。

    第9讲 几何填选压轴题-2021年中考数学二轮复习重点题型针对训练(北师大版):

    这是一份第9讲 几何填选压轴题-2021年中考数学二轮复习重点题型针对训练(北师大版),共18页。教案主要包含了方法梳理,强化巩固练习,答案详解,思路分析等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map