2021学年3.1.1 一元一次方程教学设计
展开
这是一份2021学年3.1.1 一元一次方程教学设计,共4页。教案主要包含了综合运用,课堂检测,课堂小结等内容,欢迎下载使用。
完成情况
班级: 组号: 姓名:
复习导航:阅读书,带着书中的问题进行复习思考.
知识梳理:
列方程解应用题的一般步骤(解题思路)
(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).
(2)设—设出未知数:根据提问,巧设未知数.
(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系
列出方程.
(4)解——解方程:解所列的方程,求出未知数的值.
(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,
检验后写出答案.(注意带上单位)
二、综合运用
(一)行程问题
行程问题中的三个基本量及其关系:
路程=速度×时间 时间=路程÷速度 速度=路程÷时间
某人从家里骑自行车到学校。若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?
(二)行船与飞机飞行问题:
航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
(三)工程问题
工程问题中的三个量及其关系为:
工作总量=工作效率×工作时间
一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?
(四)调配与配套问题
某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.
球赛积分问题
足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分。 请问:(1)前8场比赛中,这支球队共胜了多少场? (2)这支球队打满14场比赛,最多能得多少分?
(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标。请你分析一下在后面的6场比赛中,这支球队至少要胜几场,才能达到预期的目标?
市场经济问题
甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?
(七)方案设计问题
某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
数字位置问题
有一个两位数,十位上的数是个位上的数的2倍,如果把这两个数字的位置调换,那么所得的新的两位数比原来的两位数小27,求这个两位数?
三、课堂检测
A组:1.一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求
两城之间的距离。
2.某文艺团体组织了一场义演为“希望工程”募捐,共售出1000张门票,已知成人票每张8元,学生票每张5元,共得票款6950元,成人票和学生票各几张?
3.某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八
折出售后,商家所获利润率为40%, 问这种鞋的标价是多少元?优惠价是多少?
B组:4.甲、乙两个水池共蓄水50t,甲池用去5t,乙池又注入8t后,甲池的水比乙池的水少3t,问原来
甲、乙两个水池各有多少吨水?
5.一份试卷共25道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分,如果一个学生得90分,那么他选对几题?现有500名学生参加考试,有得83分的同学吗?为什么?
四、课堂小结
本单元你还有哪些困惑?
五、
1.一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,
得到的新的两位数字比原来的两位数大18,求原来的两位数?
2.某学校班主任暑假带领该班三好学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠;” 乙旅行社说:“教师在内全部按票价的6折优惠;” 若全部票价是240元;
(1)如果有10名学生,应参加哪个旅行社,并说出理由;
(2)当学生人数是多少时,两家旅行社收费一样多?
相关教案
这是一份人教版七年级上册3.1.1 一元一次方程教案设计,共6页。教案主要包含了教学重点,教学难点,教学说明等内容,欢迎下载使用。
这是一份人教版七年级上册3.1.1 一元一次方程教案,共5页。教案主要包含了基础回顾 加深理解,列出方程 表示等量,求解方程 体会化归,实际应用 方程建模,课堂小结 布置作业等内容,欢迎下载使用。
这是一份初中人教版3.1.1 一元一次方程教学设计,共3页。教案主要包含了内容概括,规律方法总结,本章专题剖析,只设未知数等内容,欢迎下载使用。