2020-2021学年15.1 二次根式教学设计
展开
这是一份2020-2021学年15.1 二次根式教学设计,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明等内容,欢迎下载使用。
二次根式的认识 【知识与技能】1.理解二次根式的概念,并利用(a≥0)的意义解答具体题目.2.理解(a≥0)是非负数和()2=a.3.理解=a(a≥0)并利用它进行计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0),最后运用结论严谨解题.3.通过具体数据的解答,探究并利用这个结论解决具体问题.【情感态度】通过具体的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如(a≥0)的式子叫做二次根式.2. (a≥0)是一个非负数;()2=a(a≥0)及其运用.3. 【教学难点】利用“(a≥0)”解决具体问题.关键:用分类思想的方法导出a(a≥0)是一个非负数;用探究的方法导出一、情境导入,初步认识回顾:当a是正数时,表示a的算术平方根,即正数a的正的平方根.当a是零时,等于0,它表示零的平方根,也叫做零的算术平方根.当a是负数时,没有意义.【教学说明】通过对算术平方根的回顾引入二次根式的概念.二、思考探究,获取新知概括:(a≥0)表示非负数a的算术平方根,也就是说,(a≥0)是一个非负数,它的平方等于a.即有:(1)≥0;(2)()2=a(a≥0).形如(a≥0)的式子叫做二次根式.注意:在中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.思考:等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的的值,看看有什么规律.概括:当a≥0时,=a;当a<0时,=-a.三、运用新知,深化理解1.x取什么实数时,下列各式有意义?2.计算下列各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳.四、师生互动,课堂小结1.师生共同回顾二次根式的概念及有关性质:(1)()2=a(a≥0);(2)当a≥0时,=a;当a<0时,=-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳. 1.布置作业:从教材相应练习和“习题”中选取.2.完成练习册中本课时练习的“课时作业”部分. 本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.
相关教案
这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试教案及反思,共7页。教案主要包含了教师准备,学生准备,基础巩固,能力提升,拓展探究,答案与解析等内容,欢迎下载使用。
这是一份初中数学冀教版八年级上册15.3 二次根式的加减教学设计,共4页。教案主要包含了内容和内容解析,目标和目标解析,教学问题诊断分析,教学过程设计,同步练习等内容,欢迎下载使用。
这是一份2021学年15.2 二次根式的乘除教案,共4页。教案主要包含了自学指导等内容,欢迎下载使用。