|教案下载
搜索
    上传资料 赚现金
    人教版八年级上册数学 第13章 【教学设计】 课题学习 最短路径问题
    立即下载
    加入资料篮
    人教版八年级上册数学 第13章 【教学设计】 课题学习 最短路径问题01
    人教版八年级上册数学 第13章 【教学设计】 课题学习 最短路径问题02
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中人教版13.4课题学习 最短路径问题教学设计

    展开
    这是一份初中人教版13.4课题学习 最短路径问题教学设计,共5页。教案主要包含了内容和内容解析,目标和目标解析,教学问题诊断分析,教学过程设计,目标检测设计等内容,欢迎下载使用。

    1.内容
    利用轴对称研究某些最短路径问题.
    2.内容解析
    最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为基础知识,有时还要借助轴对称、平移、旋转等变换进行研究.
    本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题.
    基于以上分析,确定本节课的教学重点是:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题,培养学生解决实际问题的能力.
    二、目标和目标解析
    1.教学目标
    能利用轴对称解决简单的最短路径问题,体会图形的变换在解决最值问题中的作用,感悟转化思想,进一步获得数学活动的经验,增强应用意识.
    2. 教学目标解析
    学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线”,把实际问题抽象为数学问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.
    三、教学问题诊断分析
    最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手.
    对于直线异侧的两点,怎样在直线上找到一点,使这一点到这两点的距离之和最小,学生很容易想到连接这两点,所连线段与直线的交点就是所求的点.但对于直线同侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,一些学生会感到茫然,找不到解决问题的思路.
    在证明“最短”时,需要在直线上任取一点(与所求作的点不重合),证明所连线段和大于所求作的线段和,学生想不到,不会用.
    教学时,教师可从“直线异侧的两点”过渡到“直线同侧的两点”,为学生搭建“脚手架”.在证明“最短”时,教师可告诉学生,证明“最大”“最小”这类问题,常常要另选一个量,通过与求证的那个“最大”“最小”的量进行比较来证明.由于另取的点具有任意性,所以结论对于直线上的每一点(C点除外)都成立
    本节课的教学难点是:如何利用轴对称将最短路径问题转化为线段和最小问题.
    四、教学过程设计
    1.创设问题情境
    问题1 如图,从A地到B地有三条路可供选择,你会选择哪条路距离最短?说说你的理由.
    师生活动:学生回答问题,说出理由:两点之间,线段最短.
    【设计意图】让学生回顾“两点之间,线段最短”,为引入新课作准备.
    问题2:如图,要在燃气管道l上修建一个泵站,分别向A、B两村供气,泵站修在管道的什么地方,可使所用的输气管线最短?
    师生活动:学生回答,连接AB,线段AB与l的交点即为泵站修建的位置.
    【设计意图】让学生进一步感受“两点之间,线段最短”,为把“同侧的两点”转化为“异侧的两点”做铺垫.
    2.将实际问题抽象为数学问题
    问题3 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:
    从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?
    精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.
    你能将这个问题抽象为数学问题吗?
    师生活动:学生尝试回答,并相互补充,最后达成共识:(1)将A,B 两地抽象为两个点,将河l 抽象为一条直线;(2)在直线l上找到一点C,使AC与BC的和最小?
    【设计意图】学生通过动手操作,在具体感知轴对称图形特征的基础上,抽象出轴对称图形的概念.
    3.解决数学问题
    问题4 如图,点A,B 在直线l 的同侧,在直线l上找到一点C,使AC 与BC的和最小?
    师生活动:学生独立思考,尝试画图,相互交流.
    如果学生有困难,教师可作如下提示:
    (1)如果点B在点A的异侧,如何在直线l上找到一点C,使AC 与BC的和最小
    (2)现在点B与点A在同侧,能否将点B移到l 的另一侧点处,且满足直线l上的任意一点C,都能保持?
    (3)你能根据轴对称的知识,找到(2)中符合条件的点吗?
    师生共同完成作图,如下图.
    作法:(1)作点B 关于直线l 的对称点B′;
    (2)连接AB′,与直线l 相交于点C.则点C 即为所求.
    【设计意图】教师一步一步引导学生,如何将同侧的两点转化为异侧的两点,为问题的解决提供思路,渗透转化思想.
    4.证明AC +BC “最短”
    问题4 你能用所学的知识证明AC +BC最短吗?
    师生活动:学生独立思考,相互交流,师生共同完成证明过程.
    证明:如图,在直线l 上任取一点(与点C 不重合),连接AC′,BC′,.
    由轴对称的性质知,
    ,.
    ∴,

    在△中,,
    ∴ .
    即AC +BC 最短.
    追问1:证明AC +BC最短时,为什么要在直线l上任取一点(与点C但不重合)?
    师生活动:学生相互交流,教师适时点拨,最后达成共识:若直线l上任意一点(与点C不重合)与A,B两点的距离和都大于AC +BC,就说明AC +BC最小.
    【设计意图】让学生体会作法的正确性,提高逻辑思维能力.
    追问2:回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?
    师生活动:学生回答,相互补充.
    【设计意图】学生在反思中,体会轴对称的桥梁作用,感悟转化思想,丰富数学活动经验.
    5.巩固练习
    如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.

    师生活动:学生分析解题思路,独立完成画图,教师适时点拨.
    【设计意图】让学生进一步巩固解决最短路径问题的基本策略和基本方法.
    6.归纳小结
    教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.
    (1)本节课研究问题的基本过程是什么?
    (2)轴对称在所研究问题中起什么作用?
    师生活动:教师引导,学生小结.
    【设计意图】:引导学生把握研究问题的基本策略和方法,体会轴对称在解决最短路径问题中的作用,感悟转化思想的重要价值.
    7.布置作业:
    教科书复习题13第15题.
    五、目标检测设计
    某实验中学八(1)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?
    【设计意图】考查学生解决“最短路径问题”的能力.
    相关教案

    初中数学人教版八年级上册13.4课题学习 最短路径问题教案设计: 这是一份初中数学人教版八年级上册13.4课题学习 最短路径问题教案设计,共12页。教案主要包含了教学目标,教学重难点,教学过程等内容,欢迎下载使用。

    初中人教版13.4课题学习 最短路径问题教学设计及反思: 这是一份初中人教版13.4课题学习 最短路径问题教学设计及反思,共3页。教案主要包含了创设情境,导入新课,合作交流,探索新知,作业等内容,欢迎下载使用。

    数学13.4课题学习 最短路径问题教学设计及反思: 这是一份数学13.4课题学习 最短路径问题教学设计及反思,共7页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map