初中数学第二章 一元二次方程3 用公式法求解一元二次方程当堂达标检测题
展开
这是一份初中数学第二章 一元二次方程3 用公式法求解一元二次方程当堂达标检测题,共4页。试卷主要包含了3用公式法求解一元二次方程等内容,欢迎下载使用。
2021-2022学年度山东省滕州市鲍沟中学九年级数学上册同步练习题2.3用公式法求解一元二次方程 一、单选题1.一元二次方程的解的情况是( )A.无解 B.有两个不相等的实数根C.有两个相等的实数根 D.只有一个解2.下列方程中,无实数根的是( )A.x2+2x+5=0 B.x2-x-2=0C.2x2+x-10=0 D.2x2-x-1=03.一元二次方程的根的情况是( )A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.无实数根4.若关于x的一元二次方程x2 - 4x + 2k = 0有两个实数根,则k的取值范围是()A.k>-2 B.k<-2 C.k≥2 D.k≤25.若方程没有实数根,则m的最大整数值是( )A.-3 B.3 C.-2 D.26.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是( )A. B.且 C. D.且7.若一元二次方程有两个相等的实数根,则m的值是( )A.2 B. C. D.8.一元二次方程的较大实数根在下列数轴中哪个范围之内( )A. B.C. D.9.x=是下列哪个一元二次方程的根( )A.3x2+5x+1=0 B.3x2﹣5x+1=0 C.3x2﹣5x﹣1=0 D.3x2+5x﹣1=010.已知关于x的一元二次方程M为ax2+bx+c=0、N为cx2+bx+a=0(a≠c),则下列结论:①如果5是方程M的一个根,那么是方程N的一个根;②如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;③如果方程M与方程N有一个相同的根,那么这个根必是x=1.其中正确的结论是( )A.①② B.①③ C.②③ D.①②③11.对于一元二次方程来说,当时,方程有两个相等的实数根:若将的值在的基础上减小,则此时方程根的情况是( )A.没有实数根 B.两个相等的实数根C.两个不相等的实数根 D.一个实数根12.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根 二、填空题13.方程()的根是___________.14.若关于的一元二次方程有两个相等的实数根,则的值是__________.15.方程中,的值为__________,根是___________.16.关于的一元二次方程,其根的判别式的值为1,=______.17.已知关于x的方程a(x+c)2+b=0(a,b,c为常数,a≠0)的两根分别为﹣2,1,那么关于x的方程a(x+c﹣2)2+b=0的两根分别为_____.18.若关于的一元二次方程没有实数根.化简:=____________. 三、解答题19. 20.若关于x的一元二次方程有实数根,求的取值范围 21.已知是△ABC的三边长,关于的一元二次方程x2+x+2c-a=0有两个相等的实数根,关于的方程的根为.
(1)试判断△ABC的形状;
(2)若是关于的一元二次方程的两个实数根,求的值. 22.已知关于的方程.
(1)试判断方程根的情况;
(2)若=2是方程的一个根,求的值;
(3)是否存在实数,使方程与方程有一个相同的根?若存在,求出的值;若不存在,请说明理由.
相关试卷
这是一份初中数学1 成比例线段课后练习题,共2页。试卷主要包含了1成比例线段等内容,欢迎下载使用。
这是一份初中数学北师大版七年级上册第三章 整式及其加减3.3 整式同步达标检测题,共3页。试卷主要包含了3整式等内容,欢迎下载使用。
这是一份初中数学北师大版九年级上册8 图形的位似同步训练题,共6页。试卷主要包含了8图形的位似等内容,欢迎下载使用。