初中数学华师大版八年级上册第14章 勾股定理14.2 勾股定理的应用综合训练题
展开1.如图,一棵树从3m处折断了,树顶端离树底端距离4m,那么这棵树原来的高度是( )
A.8mB.5mC.9mD.7m
2.如图在实践活动课上,小华打算测量学校旗杆的高度,她发现旗杆顶端的绳子垂到地面后还多出1m,当她把绳子斜拉直,且使绳子的底端刚好接触地面时,测得绳子底端距离旗杆底部5m,由此可计算出学校旗杆的高度是( )
A.8mB.10mC.12mD.15m
3.如图,一个梯子斜靠在一竖直的墙AO上,测得AO=4m,若梯子的顶端沿墙下滑1m,这时梯子的底端也下滑1m,则梯子AB的长度为( )
A.5mB.6mC.3mD.7m
4.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形的面积为64,小正方形的面积为9,若用x、y分别表示直角三角形的两直角边长(x>y),则下列四个说法:①x2+y2=64:②x﹣y=3;③2xy=55;④x+y=11.其中正确的是( )
A.①②B.①②③C.①②④D.①②③④
5.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是( )
A.B.C.a+bD.a﹣b
二.填空题
6.《九章算术》中一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AC生长在它的中央,高出水面部分BC为1尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部C恰好碰到岸边的C'处(如图),水深和芦苇长各多少尺?则该问题的水深是 尺.
7.如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船沿 方向航行.
8.《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,未折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈=10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺,问折断处离地面的距离为 .
9.如图,∠AOB=90°,OA=25m,OB=5m,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是 m.
三.解答题
10.如图,长7.5m的梯子靠在墙上,梯子的底部离墙的底端4.5m.
(1)求梯子的顶端到地面的距离;
(2)由于地面有水,梯子底部向右滑动1.5m,则梯子顶端向下滑多少米?
11.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则:
(1)E站应建在距A站多少千米处?
(2)DE和EC垂直吗?说明理由.
12.在某台风登陆期间,A市接到台风警报时,在该市正南方向150km的点B处台风中心正以20km/h的速度沿BC方向移动,已知城市A到BC的距离AD=90km.
(1)台风中心经过多长时间从点B移动到点D?
(2)如果在距台风中心30km的圆形区域内都有受到台风破坏的危险,为让处于点D的人脱离危险.人必须在接到台风警报后的几时内撤离(撤离速度为6km/h)?
13.如图,在点B正北方150cm的A处有一信号接收器,点C在点B的北偏东45°的方向,一电子狗P从点B向点C的方向以5cm/s的速度运动并持续向四周发射信号,信号接收器接收信号的有效范围为170cm.
(1)求出点A到线段BC的最小距离;
(2)请判断点A处是否能接收到信号,并说明理由.若能接收信号,求出可接收信号的时间.
14.交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路L旁选取一点P,在公路L上确定点O、B,使得PO⊥L,OP=100米,∠PBO=45°.这时,一辆轿车在公路L上由B向A匀速驶来,测得此车从B处行驶到A处所用的时间为3秒,并测得∠APO=60°.求AB的距离和此车的速度.(参考数据=1.41,=1.73)
15.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿AB由点A向点B移动,已知点C为一海港,且点C与直线AB上两点A,B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.
(1)海港C受台风影响吗?为什么?
(2)若台风的速度为25km/h,台风影响该海港持续的时间有多长?
16.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B处,在沿海城市A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿BC方向移动.已知AD⊥BC且AD=AB,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:
(1)A城市是否会受到台风影响?请说明理由.
(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?
(3)该城市受到台风影响的最大风力为几级?
参考答案
一.选择题
1.解:∵AC=4米,BC=3米,∠ACB=90°,
∴折断的部分长为AB===5,
∴折断前高度为BC+AB=5+3=8(米).
故选:A.
2.解:设旗杆的高度为x米,则绳子的长度为(x+1)米,
根据勾股定理可得:x2+52=(x+1)2,
解得,x=12.
即旗杆的高度为12米.
故选:C.
3.解:设BO=xm,
由题意得:AC=1m,BD=1m,AO=4m,
在Rt△AOB中,根据勾股定理得:AB2=AO2+OB2=42+x2,
在Rt△COD中,根据勾股定理得:CD2=CO2+OD2=(4﹣1)2+(x+1)2,
∴42+x2=(4﹣1)2+(x+1)2,
解得:x=3,
∴AB===5(m),
即梯子AB的长为5m,
故选:A.
4.解:①∵△ABC为直角三角形,
∴根据勾股定理:x2+y2=AB2=64,
故本选项正确;
②由图可知,x﹣y=CE==3,
故本选项正确;
③由2xy+9=64可得2xy=55,
故本选项正确;
④∵x2+2xy+y2=64+55,
整理得,(x+y)2=119,
x+y=≠11,
故本选项错误;
∴正确结论有①②③.
故选:B.
5.解:设CD=x,则DE=a﹣x,
∵HG=b,
∴AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,
∴x=,
∴BC=DE=a﹣=,
∴BD2=BC2+CD2=()2+()2=,
∴BD=,
故选:B.
二.填空题
6.解:依题意画出图形,
设芦苇长AC=AC′=x尺,
则水深AB=(x﹣1)尺,
∵C′E=10尺,
∴C′B=5尺,
在Rt△AC′B中,
52+(x﹣1)2=x2,
解得x=13,
即芦苇长13尺,水深为12尺,
故答案为:12.
7.解:由题意可知:AP=12,BP=16,AB=20,
∵122+162=202,
∴△APB是直角三角形,
∴∠APB=90°,
由题意知∠APN=40°,
∴∠BPN=90°﹣∠APN=90°﹣40°=50°,
即乙船沿北偏东50°方向航行,
故答案为:北偏东50°.
8.解:设折断后的竹子高AC为x尺,则AB长为(10﹣x)尺,根据勾股定理得:
AC2+BC2=AB2,
即:x2+32=(10﹣x)2,
解得:x=4.55,
故答案为:4.55尺.
9.解:设BC=xm,则AC=xm,OC=(25﹣x)m,
由勾股定理得,BC2=OB2+OC2,
即x2=52+(25﹣x)2,
解得x=13.
答:机器人行走的路程BC是13m.
故答案为:13
三.解答题
10.解:(1)如图,在Rt△ABC中,AC2=AB2﹣BC2,
∵AB=7.5m,BC=4.5m,
∴AC==6(m),
答:梯子的顶端到地面的距离为6m;
(2)如图,∵BF=1.5m,
∴CF=6m,
∴EC==4.5(m),
∴AE=1.5,
答:梯子顶端向下滑1.5米.
11.解:(1)∵使得C,D两村到E站的距离相等.
∴DE=CE,
∵DA⊥AB于A,CB⊥AB于B,
∴∠A=∠B=90°,
∴AE2+AD2=DE2,BE2+BC2=EC2,
∴AE2+AD2=BE2+BC2,
设AE=x,则BE=AB﹣AE=(25﹣x),
∵DA=15km,CB=10km,
∴x2+152=(25﹣x)2+102,
解得:x=10,
∴AE=10km.
∴BE=15km.
(2)DE和EC垂直,理由如下:
在△DAE与△EBC中,
,
∴△DAE≌△EBC(SAS),
∴∠DEA=∠ECB,∠ADE=∠CEB,
∠DEA+∠D=90°,
∴∠DEA+∠CEB=90°,
∴∠DEC=90°,
即DE⊥EC.
12.解:(1)在直角三角形ABD中,根据勾股定理,得BD==120km.
120÷20=6时;
所以台风中心经过6小时从点B移动到点D.
(2)根据题意得:游人最好选择沿DA所在的方向撤离.撤离的时间=30÷6=5.
又台风到点D的时间是6小时.
即游人必须在接到台风警报后的1小时内撤离.
13.解:(1)作AH⊥BC于H.
在Rt△ABH中,∵AB=150cm,∠B=45°,
∴AH=AB•sin45°=150cm,
答:点A到线段BC的最小距离为150cm.
(2)∵AH=150cm<170cm,
∴点A处能接收到信号.
当AP=170cm时,PH==80cm,
当AP′=170cm时,HP′=80cm,
∴PP′=160cm,
∴可接收信号的时间==32s.
答:可接收信号的时间32s.
14.解:∵∠POB=90°,∠PBO=45°,
∴△POB是等腰直角三角形,
∴OB=OP=100米,
∵∠APO=60°,
∴OA=OP=100≈173(米),
∴AB=OA=OB=73米,
∴24(米/秒),
答:AB的距离为73米,此车的速度约为24米/秒.
15.解:(1)海港C受台风影响.
理由:如图,过点C作CD⊥AB于D,
∵AC=300km,BC=400km,AB=500km,
∴AC2+BC2=AB2.
∴△ABC是直角三角形.
∴AC×BC=CD×AB
∴300×400=500×CD
∴CD==240(km)
∵以台风中心为圆心周围250km以内为受影响区域,
∴海港C受到台风影响.
(2)当EC=250km,FC=250km时,正好影响C港口,
∵ED==70(km),
∴EF=140km
∵台风的速度为25km/h,
∴140÷25=5.6(小时)
即台风影响该海港持续的时间为5.6小时.
16.解:(1)该城市会受到这次台风的影响.
理由是:如图,在Rt△ABD中,∵AD=AB
∴∠ABD=30°,AB=240千米,
∴AD=AB=120千米,
∵城市受到的风力达到或超过四级,则称受台风影响,
∴受台风影响范围的半径为25×(12﹣4)=200千米.
∵120<200,
∴该城市会受到这次台风的影响.
(2)如图以A为圆心,200为半径作⊙A交BC于E、F.
则AE=AF=200.
∴台风影响该市持续的路程为:EF=2DE=2=320.
∴台风影响该市的持续时间t=320÷20=16(小时).
(3)∵AD距台风中心最近,
∴该城市受到这次台风最大风力为:12﹣(120÷25)=7.2(级).
初中数学华师大版八年级上册14.2 勾股定理的应用课后测评: 这是一份初中数学华师大版八年级上册14.2 勾股定理的应用课后测评,共8页。试卷主要包含了2 勾股定理的应用》课时练习,如图,是台阶的示意图等内容,欢迎下载使用。
初中华师大版14.2 勾股定理的应用精练: 这是一份初中华师大版14.2 勾股定理的应用精练,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
华师大版八年级上册14.2 勾股定理的应用课堂检测: 这是一份华师大版八年级上册14.2 勾股定理的应用课堂检测,共3页。