2020-2021学年江西省九江市某校初一(下)期末考试数学试卷
展开
这是一份2020-2021学年江西省九江市某校初一(下)期末考试数学试卷,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1. 下面四个手机应用图标中是轴对称图形的是( )
A.B.C.D.
2. 下列各组长度的三条线段能组成三角形的是( )
A.1cm,2cm,3cmB.1cm,1cm,2cm
C.1cm,2cm,2cmD.1cm,3cm,5cm
3. 代数式(2a2)3的计算结果是( )
A.2a6B.6a5C.8a5D.8a6
4. 将一根长为10cm的铁丝制作成一个长方形,则这个长方形的长y(cm)与宽x(cm)之间的关系式为( )
A.y=−x+5B.y=x+5C.y=−x+10D.y=x+10
5. 如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≅△CBE的是( )
A.∠A=∠CB.AD=CBC.BE=DFD.AD // BC
6.
如图,直线a // b,∠1=120∘,∠2=40∘,则∠3等于( )
A.60∘B.70∘C.80∘D.90∘
7. 若x2+k−1x+9是完全平方式,则k的值为( )
A.±6B.7C.−5D.7或−5
8. 如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致是( )
A.B.C.D.
二、填空题
1. 水珠不断滴在一块石头上,经过若干年,石头上形成了一个深为0.000048cm的小洞,则数字0.000048用科学记数法可表示为________.
2. 将“定理”的英文单词therem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为________.
3. 若m2−n2=10,且m−n=2,则m+n=________.
4. 将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=________.
5. 小明现有两根4cm,9cm的木棒,他想以这两根木棒为边钉一个三角形木框,现从5cm,7cm,9cm,11cm,13cm,17cm的木棒中选择第三根(木棒不能折断),则小明有________种选择方案.
6. 如图,将一套直角三角板的直角顶点A叠放在一起,若∠BAE=130∘,则∠CAD=________.
7. 已知,等腰△ABC中,AB=AC,E是高AD上任一点,F是腰AB上任一点,腰AC=5,BD=3,AD=4,那么线段BE+EF的最小值是________.
8. 将边长为1的正方形纸片按下图所示方法进行对折,第1次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2,…,第n次对折后得到的图形面积为Sn,S1+S2+S3+…+Sn=________.(用含n的代数式表示)
三、解答题
1. 先化简,再求值:2b2+a+ba−b−a−b2,其中a=−3,b=12.
2. 如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
1在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)
2在1问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.
3. 如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF // AE.请你完成下列填空,把证明过程补充完整.
证明:∵ ________,
∴ ∠CDA=90∘,∠DAB=90∘ (________).
∴ ∠1+∠3=90∘,∠2+∠4=90∘.
又∵ ∠1=∠2,
∴ ________ (________),
∴ DF // AE (________).
4. 某校某次外出游学活动分为三类,因资源有限,七年级2班分配到25个名额,其中甲类4个、乙类11个、丙类10个,已知该班有50名学生,班主任准备了50个签,其中甲类、乙类、丙类按名额设置签数、25个空签,采取抽签的方式来确定名额分配,请解决下列问题.
1该班小明同学恰好抽到丙类名额的概率是多少?
2该班小丽同学能有幸去参加游学活动的概率是多少?
3后来,该班同学强烈呼吁名额太少,要求抽到甲类的概率要达到20%,则还要争取甲类名额多少个?
5. 星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图像回答下列问题.
(1)玲玲到达离家最远的地方是什么时间?离家多远?
(2)如果从10时到第一次休息和11时到12时,玲玲骑行的速度都是403千米/时,求玲玲第一次休息了多长时间?
(3)她骑车速度最快是在什么时候?车速多少?
6. 如图1,在一纸张内没有交点的两条直线MN,PQ,如何确定出这两条直线所成的角的度数?聪明的小文是这么做的:作PC与直线MN平行,则直线PQ与PC的夹角度数就是直线MN,PQ所成角的度数.
(1)这种做法的理由是________;
(2)小文在此基础上又进行了如下操作(如图2):①以P为圆心,任意长为半径画圆弧,分别交直线PQ,PC于点A,D;②连结AD并延长交直线MN于点B,请写出图中所有与∠PAB相等的角;
(3)请在图2纸张内作出“直线MN,PQ所成的跑到纸张外面去的角”的角平分线,只要求作出图形,并保留作图痕迹.
7. 问题情境:
阅读:若x满足8−xx−6=3,求8−x2+x−62的值.
解:设8−x=a,x−6=b,
则8−xx−6=ab=3,a+b=8−x+x−6=2,
所以8−x2+x−62=a2+b2=a+b2−2ab=22−2×3=−2.
请仿照上例解决下面的问题:
(1)问题发现:
若x满足3−xx−2=−10,求3−x2+x−22的值;
(2)类比探究:
若x满足2021−x2+2020−x2=2019,求2021−x2020−x的值;
(3)拓展延伸:
如图,正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200,四边形NGDH和MEDQ都是正方形,PQDH是长方形,求四边形MFNP的面积(结果必须是一个具体数值).
8. 如图,已知四边形ABCD四边相等,四个角都是直角,点E在边AB上运动(不与点A,B重合),EF//AC,交BC于点F,延长DA到G使AG=AD,GE的延长线与DF交于点H,连接BH.
1△BEF是________三角形;
2请说明:△AGE≅△CDF;
3∠EHB是否为定值?如果是定值,请说明理由,并求出该定值;如果不是定值,请说明理由.
参考答案与试题解析
2020-2021学年江西省九江市某校初一(下)期末考试数学试卷
一、选择题
1.
【答案】
A
【考点】
轴对称图形
【解析】
根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.
【解答】
解:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
A、是轴对称图形,故此选项正确;
B、不是轴对称图形,故此选项错误;
C、不是轴对称图形,故此选项错误;
D、不是轴对称图形,故此选项错误.
故选A.
2.
【答案】
C
【考点】
三角形三边关系
【解析】
根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.
【解答】
解:根据三角形任意两边的和大于第三边.
A,1+2=3,不能组成三角形,故错误;
B,1+1=2,不能组成三角形,故错误;
C,1+2=3>2,能够组成三角形,故正确;
D,1+3=4
相关试卷
这是一份2020-2021学年江西省九江市某校初一(下)期中考试数学试卷新北师大版,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2020-2021学年江西省九江市某校初一(下)期中考试数学试卷 (1)新北师大版
这是一份2020-2021学年江西省赣州市某校初一(上)期末考试数学试卷新人教版,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。