终身会员
搜索
    上传资料 赚现金

    北师大版九年级上册第二单元一元二次方程单元复习讲义 (7)

    立即下载
    加入资料篮
    北师大版九年级上册第二单元一元二次方程单元复习讲义 (7)第1页
    北师大版九年级上册第二单元一元二次方程单元复习讲义 (7)第2页
    北师大版九年级上册第二单元一元二次方程单元复习讲义 (7)第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版九年级上册第二章 一元二次方程综合与测试导学案

    展开

    这是一份北师大版九年级上册第二章 一元二次方程综合与测试导学案,共9页。
    前课回顾
    一 元 二 次 方 程
    一、知识结构:
    一元二次方程
    一元二次方程解应用题
    错题重现
    1、 已知关于的方程,根据下列条件,分别求出的值.
    (1) 方程两实根的积为5;(2) 方程的两实根满足
    2.某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?
    知识详解
    考点一、概念
    (1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。
    (2)一般表达式:
    ⑶难点:如何理解 “未知数的最高次数是2”:
    ①该项系数不为“0”;
    ②未知数指数为“2”;
    ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
    典型例题:
    例1、下列方程中是关于x的一元二次方程的是( )
    A B
    C D
    变式:当k 时,关于x的方程是一元二次方程。
    例2、方程是关于x的一元二次方程,则m的值为 。
    针对练习:
    ★1、方程的一次项系数是 ,常数项是 。
    ★2、若方程是关于x的一元一次方程,
    ⑴求m的值;⑵写出关于x的一元一次方程。
    ★★3、若方程是关于x的一元二次方程,则m的取值范围是 。
    ★★★4、若方程nxm+xn-2x2=0是一元二次方程,则下列不可能的是( )
    A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1
    考点二、方程的解
    ⑴概念:使方程两边相等的未知数的值,就是方程的解。
    ⑵应用:利用根的概念求代数式的值;
    典型例题:
    例1、已知的值为2,则的值为 。
    例2、关于x的一元二次方程的一个根为0,则a的值为 。
    例3、已知关于x的一元二次方程的系数满足,则此方程
    必有一根为 。
    针对练习:
    ★1、已知方程的一根是2,则k为 ,另一根是 。
    ★2、已知关于x的方程的一个解与方程的解相同。
    ⑴求k的值; ⑵方程的另一个解。
    ★3、已知m是方程的一个根,则代数式 。
    ★★4、已知是的根,则 。
    ★★5、方程的一个根为( )
    A B 1 C D
    考点三、解法①直接开方法;②因式分解法;③配方法;④公式法
    类型一、直接开方法:
    ※※对于,等形式均适用直接开方法
    典型例题:
    例1、解方程: =0;
    例2、若,则x的值为 。
    针对练习:下列方程无解的是( )
    A. B. C. D.
    类型二、因式分解法:
    ※方程特点:左边可以分解为两个一次因式的积,右边为“0”,
    ※方程形式:如, ,
    典型例题:
    例1、的根为( )
    A B C D
    例2、若,则4x+y的值为 。
    变式1: 。
    变式2:若,则x+y的值为 。
    例3、方程的解为( )
    A. B. C. D.
    例4、解方程:
    例5、已知,则的值为 。
    针对练习:
    ★1、下列说法中:
    ①方程的二根为,,则
    ② .


    ⑤方程可变形为
    正确的有( )
    A.1个 B.2个 C.3个 D.4个
    ★2、以与为根的一元二次方程是()
    A. B.
    C. D.
    ★★3、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数:
    ⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数:
    ★★4、若实数x、y满足,则x+y的值为( )
    A、-1或-2 B、-1或2 C、1或-2 D、1或2
    5、方程:的解是 。
    ★★★6、已知,且,,求的值。
    类型三、配方法
    典型例题:
    试用配方法说明的值恒大于0。
    已知x、y为实数,求代数式的最小值。
    针对练习:
    ★★1、试用配方法说明的值恒小于0。
    ★★2、已知,则 .
    ★★★3、若,则t的最大值为 ,最小值为 。
    类型四、公式法
    ⑴条件:
    ⑵公式: ,
    典型例题:
    例1、选择适当方法解下列方程:
    ⑴ ⑵ ⑶

    例2、在实数范围内分解因式:
    (1); (2). ⑶
    类型五、 “降次思想”的应用
    典型例题:
    已知,求代数式的值。
    如果,那么代数式的值。
    例4、用两种不同的方法解方程组
    考点四、根的判别式
    根的判别式的作用:
    ①定根的个数;
    ②求待定系数的值;
    ③应用于其它。
    典型例题:
    例1、若关于的方程有两个不相等的实数根,则k的取值范围是 。
    例2、关于x的方程有实数根,则m的取值范围是( )
    A. B. C. D.
    例3、已知关于x的方程
    (1)求证:无论k取何值时,方程总有实数根;
    (2)若等腰ABC的一边长为1,另两边长恰好是方程的两个根,求ABC的周长。
    例4、已知二次三项式是一个完全平方式,试求的值.
    针对练习:
    ★1、当k 时,关于x的二次三项式是完全平方式。
    ★2、当取何值时,多项式是一个完全平方式?这个完全平方式是什么?
    ★3、已知方程有两个不相等的实数根,则m的值是 .
    ★★5、当取何值时,方程的根与均为有理数?
    考点五、方程类问题中的“分类讨论”
    典型例题:
    例1、关于x的方程
    ⑴有两个实数根,则m为 ,
    ⑵只有一个根,则m为 。
    不解方程,判断关于x的方程根的情况。
    考点六、应用解答题
    ⑴“碰面”问题;⑵“复利率”问题;⑶“几何”问题;
    ⑷“最值”型问题;⑸“图表”类问题
    典型例题:
    1、五羊足球队的庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?
    2、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人?
    北京申奥成功,促进了一批产业的迅速发展,某通讯公司开发了一种新型通讯产品投放市场,根据计划,第一年投入资金600万元,第二年比第一年减少,第三年比第二年减少,该产品第一年收入资金约400万元,公司计划三年内不仅要将投入的总资金全部收回,还要盈利,要实现这一目标,该产品收入的年平均增长率约为多少?(结果精确到0.1,)
    4、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克,销售单价每涨1元,月销售量就减少10千克,针对此回答:
    (1)当销售价定为每千克55元时,计算月销售量和月销售利润。
    (2)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,
    销售单价应定为多少?
    5、将一条长20cm的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。
    (1)要使这两个正方形的面积之和等于17cm2,那么这两段铁丝的长度分别为多少?
    (2)两个正方形的面积之和可能等于12cm2吗?若能,求出两段铁丝的长度;若不
    能,请说明理由。
    (3)两个正方形的面积之和最小为多少?
    考点七、根与系数的关系
    ⑴前提:对于而言,当满足①、②时,
    才能用韦达定理。
    ⑵主要内容:
    ⑶应用:整体代入求值。
    典型例题:
    例1、已知一个直角三角形的两直角边长恰是方程的两根,则这个直角三
    角形的斜边是( )
    A. B.3 C.6 D.
    例2、已知关于x的方程有两个不相等的实数根,
    (1)求k的取值范围;
    (2)是否存在实数k,使方程的两实数根互为相反数?若存在,求出k的值;若不
    存在,请说明理由。
    例3、小明和小红一起做作业,在解一道一元二次方程(二次项系数为1)时,小明因看错
    常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为-9和-1。你知道
    原来的方程是什么吗?其正确解应该是多少?
    例4、已知,,,求
    变式:若,,则的值为 。
    例5、已知是方程的两个根,那么 .
    针对练习:
    1、解方程组
    2.已知,,求的值。
    3、已知是方程的两实数根,求的值。

    相关学案

    2020-2021学年6 应用一元二次方程导学案及答案:

    这是一份2020-2021学年6 应用一元二次方程导学案及答案,共6页。

    初中数学北师大版九年级上册6 应用一元二次方程导学案:

    这是一份初中数学北师大版九年级上册6 应用一元二次方程导学案,共10页。学案主要包含了知识回顾,典型例题解析,考点训练,典型考题,课时训练等内容,欢迎下载使用。

    初中数学北师大版九年级上册6 应用一元二次方程导学案:

    这是一份初中数学北师大版九年级上册6 应用一元二次方程导学案,共9页。学案主要包含了解方程,已知关于x的一元二次方程,已知一元二次方程.等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map