初中6 应用一元二次方程同步训练题
展开
这是一份初中6 应用一元二次方程同步训练题,共6页。
(1) (直接开平方法) (2)4x2–8x+1=0(配方法)
(3)3x2+5(2x+1)=0(公式法) (4)(因式分解法)
二:用配方法解方程:
(1) (2)x- 2x - 2 = 0.(3)
三:用适当的方法解方程
(1) (2) (3)
(4) (5) (6)x2=9
(7)2(x-2)2=50, (8) (9)
(10) 3x2+4x=0 (11)x(x+2)=5(x-2) (12)4x2-0.3
(13) (14)x2-x-4=0 (15)(x -1 )(3x +1 ) = 0
(16)(5x-1)2=3(5x-1) (17) (x+1)2=(2x-1)2 (18)(x+3)(x-1)=5
(19)(y-1)(y-2)=(2-y); (20)(x2 -1 )2 - 5(x2 -1 ) + 4 = 0
(21)x2+2x=2-4x-x2。 (22)(x–1)(2x+1)=2 (23)
(24)(t-3)2+t=3 (25)2x(2x+1)-(x+1)(2x-11)=0。
(一元二次方程)
一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。每题3分,共24分):
1.下列方程中不一定是一元二次方程的是( )
A.(a-3)x2=8 (a≠3) B.ax2+bx+c=0
C.(x+3)(x-2)=x+5 D.
2下列方程中,常数项为零的是( )
A.x2+x=1 B.2x2-x-12=12; C.2(x2-1)=3(x-1) D.2(x2+1)=x+2
3.一元二次方程2x2-3x+1=0化为(x+a)2=b的形式,正确的是( )
A. ; B.; C. ; D.以上都不对
4.关于的一元二次方程的一个根是0,则值为( )
A、 B、 C、或 D、
5.已知三角形两边长分别为2和9,第三边的长为二次方程x2-14x+48=0的一根, 则这个三角形的周长为( )
A.11 B.17 C.17或19 D.19
6.已知一个直角三角形的两条直角边的长恰好是方程的两个根,则这个直角三角形的斜边长是( )
A、 B、3 C、6 D、9
7.使分式 的值等于零的x是( )
A.6 B.-1或6 C.-1 D.-6
8.若关于y的一元二次方程ky2-4y-3=3y+4有实根,则k的取值范围是( )
A.k>- B.k≥- 且k≠0 C.k≥- D.k> 且k≠0
9.已知方程,则下列说中,正确的是( )
(A)方程两根和是1 (B)方程两根积是2
(C)方程两根和是 (D)方程两根积比两根和大2
10.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )
A.200(1+x)2=1000 B.200+200×2x=1000
C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000
二、填空题:(每小题4分,共20分)
11.用______法解方程3(x-2)2=2x-4比较简便.
12.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.
13.
14.若一元二次方程ax2+bx+c=0(a≠0)有一个根为-1,则a、b、c的关系是______.
15.已知方程3ax2-bx-1=0和ax2+2bx-5=0,有共同的根-1, 则a= ______, b=______.
16.一元二次方程x2-3x-1=0与x2-x+3=0的所有实数根的和等于____.
17.已知3-是方程x2+mx+7=0的一个根,则m=________,另一根为_______.
18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.
19.已知是方程的两个根,则等于__________.
20.关于的二次方程有两个相等实根,则符合条件的一组的实数值可以是 , .
三、用适当方法解方程:(每小题5分,共10分)
21. 22.
四、列方程解应用题:(每小题7分,共21分)
23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.
24.如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m2,道路应为多宽?
25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。 求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?
26.解答题(本题9分)
已知关于的方程两根的平方和比两根的积大21,求的值
《一元二次方程》复习测试题参考答案
一、选择题:
1、B 2、D 3、C 4、B 5、D
6、B 7、A 8、B 9、C 10、D
二、填空题:
11、提公因式 12、-或1 13、 , 14、b=a+c 15、1 ,-2
16、3 17、-6 ,3+ 18、x2-7x+12=0或x2+7x+12=0 19、-2
20、2 ,1(答案不唯一,只要符合题意即可)
三、用适当方法解方程:
21、解:9-6x+x2+x2=5 22、解:(x+)2=0
x2-3x+2=0 x+=0
(x-1)(x-2)=0 x1=x2= -
x1=1 x2=2
四、列方程解应用题:
23、解:设每年降低x,则有
(1-x)2=1-36%
(1-x)2=0.64
1-x=±0.8
x=1±0.8
x1=0.2 x2=1.8(舍去)
答:每年降低20%。
24、解:设道路宽为xm
(32-2x)(20-x)=570
640-32x-40x+2x2=570
x2-36x+35=0
(x-1)(x-35)=0
x1=1 x2=35(舍去)
答:道路应宽1m
25、⑴解:设每件衬衫应降价x元。
(40-x)(20+2x)=1200
800+80x-20x-2x2-1200=0
x2-30x+200=0
(x-10)(x-20)=0
x1=10(舍去) x2=20
⑵解:设每件衬衫降价x元时,则所得赢利为
(40-x)(20+2x)
=-2 x2+60x+800
=-2(x2-30x+225)+1250
=-2(x-15)2+1250
所以,每件衬衫降价15元时,商场赢利最多,为1250元。
26、解答题:
解:设此方程的两根分别为X1,X2,则
(X12+X22)- X1X2=21
(X1+X2)2-3 X1X2 =21
[-2(m-2)]2-3(m2+4)=21
m2-16m-17=0
m1=-1 m2=17
因为△≥0,所以m≤0,所以m=-1
题号
一
二
三
总分
14
15
16
17
18
得分
学生对测验结果的自评
教师激励性评价和建议
相关试卷
这是一份数学北师大版1 认识一元二次方程练习,共6页。试卷主要包含了 一元二次方程, 直接开平方法, 配方法,公式法, 因式分解法, 3等内容,欢迎下载使用。
这是一份初中数学第二章 一元二次方程综合与测试课后复习题,共3页。试卷主要包含了填空,解关于x的方程,解答题等内容,欢迎下载使用。
这是一份初中数学北师大版九年级上册第二章 一元二次方程综合与测试单元测试同步达标检测题,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。