搜索
    上传资料 赚现金
    8.2.1一元线性回归模型 课件-高中数学人教A版(2019)选择性必修第三册
    立即下载
    加入资料篮
    8.2.1一元线性回归模型 课件-高中数学人教A版(2019)选择性必修第三册01
    8.2.1一元线性回归模型 课件-高中数学人教A版(2019)选择性必修第三册02
    8.2.1一元线性回归模型 课件-高中数学人教A版(2019)选择性必修第三册03
    8.2.1一元线性回归模型 课件-高中数学人教A版(2019)选择性必修第三册04
    8.2.1一元线性回归模型 课件-高中数学人教A版(2019)选择性必修第三册05
    8.2.1一元线性回归模型 课件-高中数学人教A版(2019)选择性必修第三册06
    8.2.1一元线性回归模型 课件-高中数学人教A版(2019)选择性必修第三册07
    8.2.1一元线性回归模型 课件-高中数学人教A版(2019)选择性必修第三册08
    还剩28页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)选择性必修 第三册8.2 一元线性回归模型及其应用课文配套ppt课件

    展开
    这是一份人教A版 (2019)选择性必修 第三册8.2 一元线性回归模型及其应用课文配套ppt课件,共36页。PPT课件主要包含了相关关系的概念,对相关关系的理解,1经验作出推断,解列表,所求回归直线方程为等内容,欢迎下载使用。

    自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.
    2、相关关系与函数关系的异同点
    不同点:函数关系是一种确定的关系,因果关系;而相关关系是一种非确定性关系,也可能是伴随关系。
    相同点:均是指两个变量的关系
    相关关系—当自变量取值一定,因变量的取值带有一定的随机性( 非确定性关系)函数关系---函数关系指的是自变量和因变量之间的关系是相互唯一确定的.
    1、散点图:将样本中n个数据点(xi,yi)(i=1,2,…,n)描在平面直角坐标系中,以表示具有相关关系的两个变量的一组数据的图形叫做散点图.
    2、分类:(1)正相关、负相关
    正相关:如果散点图的点散布在从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也近似的由小变大,对于两个变量的这种相关关系,我们称为正相关
    负相关:如果散点图的点散布的位置是从在左上角到右下角的区域,即一个变量的值由小变大时,另一个变量的值也近似的由大变小,对于两个变量的这种相关关系,我们称为负相关.
    (2)线性相关和非线性相关
    两个变量之间相关关系的确定
    (2).通过样本数据分析,从数据中提取信息,并构建适当的模型,再利用模型进行估计或推断
    (1)当r >0时,称成对样本数据正相关;当r <0时,称成对样本数据负相关.
    (2)r的取值范围为[-1,1]
    (3)当|r|越接近1时,成对样本数据的线性相关程度越强;当|r|越接近0时,成对样本数据的线性相关程度越弱.
    获得总体中所有的成对数据往往是不容易的,因此,我们还是要用样本估计总体的思想来解决问题,也就是说,我们先要通过抽样获取两个变量的一些成对样本数据,再计算出样本相关系数,通过样本相关系数去估计总体相关系数,从而了解两个变量之间的相关程度,对于简单随机样本而言,样本具有随机性,因此样本相关系数r也具有随机性,一般地,样本容量越大,用样本相关系数估计两个变量的相关系数的效果越好。
    通过前面的学习我们已经了解到,根据成对样本数据的散点图和样本相关系数,可以推断两个变量是否存在相关关系、是正相关还是负相关,以及线性相关程度的强弱等.
    下面我们研究当两个变量线性相关时,如何利用成对样本数据建立统计模型,并利用模型进行预测的问题.
    如果能像建立函数模型刻画两个变量之间的确定性关系那样,通过建立适当的统计模型刻画两个随机变量的相关关系,那么我们就可以利用这个模型研究两个变量之间的随机关系,并通过模型进行预测.
    问题1:生活经验告诉我们,儿子的身高与父亲的身高相关.一般来说,父亲的身高较高时,儿子的身高通常也较高.为了进一步研究两者之间的关系,有人调查了14名男大学生的身高及其父亲的身高,得到的数据如表1所示.
    可以发现,散点大致分布在一条从左下角到右上角的直线附近,表明儿子身高和父亲身高线性相关.利用统计软件,求得样本相关系数为r≈0.886,表明儿子身高和父亲身高正线性相关,且相关程度较高。
    问题2:根据表中的数据,儿子身高和父亲身高这两个变量之间的关系可以用函数模型刻画吗?
    列表法是函数的一种表示方法,但并不是所有列表表示的数据都是函数关系,要成为函数关系必须满足函数的定义,即应满足“集合A中的任意一个数,在集合B中都存在唯一的数与它对应”.
    表中的数据,存在父亲身高相同而儿子身高不同的情况.例如,第6个和第8个观测父亲的身高均为172cm,而对应的儿子的身高为176cm和174cm;同样在第3,4个观测中,儿子的身高都是170cm,而父亲的身高分别为173cm,169cm.可见儿子的身高不是父亲身高的函数同样父亲的身高也不是儿子身高的函数,所以不能用函数模型来刻画.
    问题3:从成对样本数据的散点图和样本相关系数可以发现,散点大致分布在一条直线附近表明儿子身高和父亲身高有较强的线性关系.我们可以这样理解,由于有其他因素的存在,使儿子身高和父亲身高有关系但不是函数关系.那么影响儿子身高的其他因素是什么?
    影响儿子身高的因素除父亲的身外,还有母亲的身高、生活的环境、饮食习惯、营养水平、体育锻炼等随机的因素,儿子身高是父亲身高的函数的原因是存在这些随机的因素.
    问题4:由问题3我们知道,正是因为存在这些随机的因素,使得儿子的身高呈现出随机性各种随机因素都是独立的,有些因素又无法量化.你能否考虑到这些随机因素的作用,用类似于函数的表达式,表示儿子身高与父亲身高的关系吗?
    如果用x表示父亲身高,Y表示儿子的身高,用e表示各种其他随机因素影响之和,称e为随机误差,由于儿子身高与父亲身高线性相关,所以Y=bx+a.
    其中,Y称为因变量或响应变量,x称为自变量或解释变量;a和b为模型的未知参数,a称为截距参数,b称为斜率参数;e是Y与bx+a之间的随机误差,模型中的Y也是随机变量,其值虽然不能由变量x的值确定,但是却能表示为bx+a与e的和(叠加),前一部分由x所确定,后一部分是随机的,如果e=0,那么Y与x之间的关系就可用一元线性函数模型来描述.
    追问:为什么要假设E(e)=0,而不假设其为某个不为0的常数?
    因为误差是随机的,即取各种正负误差的可能性一样,所以它们均值的理想状态应该为0.
    思考:你能结合父亲与儿子身高的实例,说明回归模型①的意义?
    问题5:你能结合具体实例解释产生模型①中随机误差项的原因吗?
    (1)除父亲身高外,其他可能影响儿子身高的因素,比如母亲身高、生活环境、饮食习惯和锻炼时间等.
    (2)在测量儿子身高时,由于测量工具、测量精度所产生的测量误差.
    (3)实际问题中,我们不知道儿子身高和父亲身高的相关关系是什么,可以利用一元线性回归模型来近似这种关系,这种近似关系也是产生随机误差e的原因.
    产生随机误差e的原因有:
    参数a和b刻画了变量Y与变量x的线性关系,因此通过样本数据估计这两个参数,相当于寻找一条适当的直线,使表示成对样本数据的这些散点在整体上与这条直线最接近.
    与函数模型不同,回归模型的参数一般是无法精确求出的,只能通过成对样本数据估计这两个参数。
    追问1:我们怎样寻找一条“最好”的直线,使得表示成对样本数据的这些散点在整体上与这条直线最“接近”?
    目标:从成对样本数据出发,用数学的方法刻画“从整体上看,各散点与直线最接近”
    方法:利用点到直线y=bx+a的“距离”来刻画散点与该直线的接近程度,然后用所有“距离”之和刻画所有样本观测数据与该直线的接近程度.
    由yi=bxi+a+ei(i=1,2,…,n),得|yi-(bxi+a)|=|ei|.显然|ei|越小,表示点(xi,yi)与点(xi,bxi+a)的“距离”越小,即样本数据点离直线y=bx+a的竖直距离越小。特别地,当ei=0时,表示点(xi,yi)在这条直线上.
    我们设满足一元线性回归模型的两个变量的n对样本数据为(x1,y1),(x2,y2),…,(xn,yn)
    求a,b的值,使Q(a,b)最小
    上式是关于b的二次函数,因此要使Q取得最小值,当且仅当b的取值为
    我们将 称为Y关于x的经验回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线,这种求经验回归方程的方法叫最小二乘法.
    问题7:利用下表的数据,依据用最小二乘估计一元线性回归模型参数的公式,求出儿子身高Y关于父亲身高x的经验回归方程。
    儿子的身高不一定会是177cm,这是因为还有其他影响儿子身高的因素,回归模型中的随机误差清楚地表达了这种影响,父亲的身高不能完全决定儿子的身高,不过,我们可以作出推测,当父亲的身高为176cm时,儿子身高一般在177cm左右.
    问3:根据模型,父亲身高为多少时,长大成人的儿子的平均身高与父亲身高一样?你怎么看这个判断?
    例如,对于右表中的第6个观测,父亲身高为172cm,其儿子身高的观测值为y==176(cm),预测值为96=0.839×172+28.957=173.265(cm),残差为176-173.265=2.735(cm).类似地,可以得到其他的残差,如右表所示.
    问题8:儿子身高与父亲身高的关系,运用残差分析所得的一元线性回归模型的有效性吗?
    残差图:作图时纵坐标 为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图.
    观察表可以看到,残差有正有负,残差的绝对值最大是4.413.观察残差的散点图可以发现,残差比较均匀地分布在横轴的两边,说明残差比较符合一元线性回归模型的假定,是均值为0、方差为σ2的随机变量的观测值.可见,通过观察残差图可以直观判新模型是否满足一元线性回归模型的假设. 一般地,建立经验回归方程后,通常需要对模型刻画数据的效果进行分析,借助残差分析还可以对模型进行改进,使我们能根据改进模型作出更符合实际的预测与决策。
    思考:观察以下四幅残差图,你认为哪一个残差满足一元线性回归模型中对随机误差的假定?
    图(1)显示残差与观测时间有线性关系,应将时间变量纳入模型;图(2)显示残差与观测时间有非线性关系,应在模型中加入时间的非线性函数部分;图(3)说明残差的方差不是一个常数,随观测时间变大而变大;图(4)的残差比较均匀地集中在以横轴为对称轴的水平带状区域内.
    所以,只有图(4)满足一元线性回归模型对随机误差的假设。
    练习:关于残差图的描述错误的是(  ) A.残差图的横坐标可以是样本编号 B.残差图的横坐标也可以是解释变量或响应变量 C.残差点分布的带状区域的宽度越窄相关指数越小 D.残差点分布的带状区域的宽度越窄残差平方和越小
    对于一组具有线性相关关系的数据
    我们知道其回归方程的截距和斜率的最小二乘估计公式分别为:
    2、求回归直线方程的步骤:
    某大学中随机选取8名女大学生,其身高和体重数据如下表所示.
    求根据女大学生的身高预报体重的回归方程,并预报一名身高为172cm的女大学生的体重.
    因此,对于身高172cm的女大学生,由线性回归方程可以预报其体重为:
    是斜率的估计值,说明身高x每增加1个单位时,体重y就增加0.849个单位,这表明体重与身高具有正的线性相关关系.
    练习:观察两相关量得如下数据:
    求两变量间的回归方程.
    相关课件

    人教A版 (2019)选择性必修 第三册8.2 一元线性回归模型及其应用教学ppt课件: 这是一份人教A版 (2019)选择性必修 第三册8.2 一元线性回归模型及其应用教学ppt课件,共24页。

    人教A版 (2019)选择性必修 第三册8.2 一元线性回归模型及其应用教学ppt课件: 这是一份人教A版 (2019)选择性必修 第三册8.2 一元线性回归模型及其应用教学ppt课件,共24页。

    高中数学人教A版 (2019)选择性必修 第三册8.2 一元线性回归模型及其应用说课课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第三册8.2 一元线性回归模型及其应用说课课件ppt,共36页。PPT课件主要包含了复习回顾,新课导入,新知探究,巩固练习,课堂小结等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        8.2.1一元线性回归模型 课件-高中数学人教A版(2019)选择性必修第三册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map