数学人教A版 (2019)9.2 用样本估计总体获奖教案
展开本节是主要介绍如何从样本中提取基本信息:方差、标准差、极差,来推断总体的情况.统计学是研究如何收集、整理、分析数据的科学,它可以为人们制定决策提供依据.
课程目标
1.结合实例,能用样本估计总体的离散程度参数(标准差、方差、极差).
2.会求样本数据的方差、标准差、极差.
3.理解离散程度参数的统计含义.
数学学科素养
1.数学抽象:方差、标准差有关概念的理解;
2.数学运算:求方差、标准差;
3. 数据分析:用样本平均数和样本标准差估计总体.
重点:求样本数据的方差、标准差、极差.
难点:用样本平均数和样本标准差估计总体.
教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
情景导入
在初中我们学过方差、中位数和平均数标准差的概念,他们都是描述一组数据的离散程度的特征数.回忆它们的定义及特点,用样本平均数和样本标准差怎样估计总体.
要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
二、预习课本,引入新课
阅读课本209-213页,思考并完成以下问题
1、标准差和方差各指什么?
2、标准差和方差的特征各是什么?
要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究
1.方差、标准差的定义
一组数据x1,x2,…,xn,用eq \x\t(x)表示这组数据的平均数,则这组数据的方差为eq \f(1,n)eq \i\su(i=1,n, )(xi-eq \x\t(x))2=eq \f(1,n)eq \i\su(i=1,n,x)eq \\al(2,i)-eq \x\t(x)2,标准差为eq \r(\f(1,n)\i\su(i=1,n, )xi-\x\t(x)2).
2.总体方差、总体标准差的定义
如果总体中所有个体的变量值分别为Y1,Y2,…,YN,总体平均数为eq \x\t(Y),则称S2=eq \f(1,N)eq \i\su(i=1,N, )(Yi-eq \x\t(Y))2
为总体方差,S=eq \r(S2)为总体标准差.如果总体的N个变量值中,不同的值共有k(k≤N)个,记为Y1,Y2,…,Yk,其中Yi出现的频数为fi(i=1,2,…,k),则总体方差为S2=eq \f(1,N)eq \i\su(i=1,k,f)i(Yi-eq \x\t(Y))2.
3.样本方差、样本标准差的定义
如果一个样本中个体的变量值分别为y1,y2,…,yn,样本平均数为eq \x\t(y),则称s2=eq \f(1,n)eq \i\su(i=1,n, )(yi-eq \x\t(y))2
为样本方差,s=eq \r(s2)为样本标准差.
4.方差、标准差特征
标准差、方差刻画了数据的离散程度或波动幅度,标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小.在刻画数据的分散程度上,方差和标准差是一样的.但在解决实际问题中,一般多采用标准差.
四、典例分析、举一反三
题型一 标准差与方差的应用
例1 甲、乙两机床同时加工直径为100 mm的零件,为检验质量,各从中抽取6件测量,数据为:
甲:99 100 98 100 100 103
乙:99 100 102 99 100 100
(1)分别计算两组数据的平均数及方差;
(2)根据计算结果判断哪台机床加工零件的质量更稳定.
【答案】 (1)eq \x\t(x)甲=100,eq \x\t(x)乙=100.seq \\al(2,甲)=eq \f(7,3),seq \\al(2,乙)=1.
(2)乙机床加工零件的质量更稳定.
【解析】 (1)eq \x\t(x)甲=eq \f(1,6)(99+100+98+100+100+103)=100,
eq \x\t(x)乙=eq \f(1,6)(99+100+102+99+100+100)=100.
seq \\al(2,甲)=eq \f(1,6)[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=eq \f(7,3),
seq \\al(2,乙)=eq \f(1,6)[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.
(2)两台机床所加工零件的直径的平均值相同,又seq \\al(2,甲)>seq \\al(2,乙),所以乙机床加工零件的质量更稳定.
解题技巧(实际应用中标准差、方差的意义)
在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差描述了数据相对平均数的离散程度,在平均数相同的情况下,方差越大,离散程度越大,数据波动性越大,稳定性越差;方差越小,数据越集中,稳定性越高.
跟踪训练一
1.为了参加某数学竞赛,某高级中学对高二年级理科、文科两个数学兴趣小组的同学进行了赛前模拟测试,成绩(单位:分)记录如下.
理科:79,81,81,79,94,92,85,89
文科:94,80,90,81,73,84,90,80
计算理科、文科两组同学成绩的平均数和方差,并从统计学的角度分析,哪组同学在此次模拟测试中发挥比较好?
【答案】理科eq \x\t(x)1=85(分),方差seq \\al(2,1)=31.25;文科eq \x\t(x)2=84(分),方差seq \\al(2,2)=41.75.
理科组同学在此次模拟测试中发挥比较好.
【解析】计算理科同学成绩的平均数eq \x\t(x)1=eq \f(1,8)×(79+79+81+81+85+89+92+94)=85(分),方差seq \\al(2,1)=eq \f(1,8)×[(79-85)2+(79-85)2+(81-85)2+(81-85)2+(85-85)2+(89-85)2+(92-85)2+(94-85)2]=31.25;
计算文科同学成绩的平均数eq \x\t(x)2=eq \f(1,8)×(73+80+80+81+84+90+90+94)=84(分),方差seq \\al(2,2)=eq \f(1,8)×[(73-84)2+(80-84)2+(80-84)2+(81-84)2+(84-84)2+(90-84)2+(90-84)2+(94-84)2]=41.75.
因为eq \x\t(x)1>eq \x\t(x)2,seq \\al(2,1)
题型二 用样本平均数和样本标准差估计总体
例2 在对树人中学高一年级学生身高的调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男生23人,其平均数和方差分别为170.6和12.59,抽取了女生27人,其平均数和方差分别为160.6和38.62.你能由这些数据计算出总样本的方差,并对高一年级全体学生的身高方差作出估计吗?
【答案】能,估计为51.4862
【解析】引入记号,把男生样本记为,其平均数记为,方差记为;把女生样本记为,其平均数记为,方差记为;把总样本数据的平均数记为,方差记为.
根据方差的定义,总样本方差为,为了与联系,变形为,计算后可得,.这样变形后可计算出.这也就是估计值.
解题技巧 (用样本平均数和样本标准差估计总体注意事项)
(1)标准差代表数据的离散程度,考虑数据范围时需要加减标准差.
(2)计算样本平均数、样本方差直接利用公式,注意公式的变形和整体代换.
跟踪训练二
1.在一个文艺比赛中,8名专业人士和12名观众代表各组成一个评判小组,给参赛选手打分.在给某选手的打分中,专业人士打分的平均数和标准差分别为47.4和3.7,观众代表打分的平均数和标准差为56.2和11.8,试根据这些数据计算这名选手得分的平均数和标准差.
【答案】平均数为52.68分,标准差为10.37.
【解析】 把专业人士打分样本记为x1,x2,…,x8,其平均数记为eq \x\t(x),方差记为seq \\al(2,x);把观众代表打分样本记为y1,y2,…,y12,其平均数为eq \x\t(y),方差记为seq \\al(2,y);把总体数据的平均数记为eq \x\t(z),方差记为s2.
则总样本平均数为:eq \x\t(z)=eq \f(8,20)×47.4+eq \f(12,20)×56.2=52.68(分),
总样本方差为:s2=eq \f(1,20)[eq \i\su(i=1,8, )(xi-eq \x\t(z))2]+eq \i\su(j=1,12, )(yj-eq \x\t(z))2]
=eq \f(1,20){8[seq \\al(2,x)+(eq \x\t(x)-eq \x\t(z))2]+12[seq \\al(2,y)+(eq \x\t(y)-eq \x\t(z))2]}
=eq \f(1,20){8[3.72+(47.4-52.68)2]+12[11.82+(56.2-52.68)2]}=107.6,
总样本标准差s=10.37.
所以计算这名选手得分的平均数为52.68分,标准差为10.37.
五、课堂小结
让学生总结本节课所学主要知识及解题技巧
六、板书设计
9.2.4 总体离散程度的估计
1.方差、标准差的定义 例1 例2
2.总体方差、总体标准差的定义
3. 样本方差、样本标准差的定义
4.方差、标准差的特征
七、作业
课本213页练习,214例习题9.2的剩余题.
本节课学生难掌握的是用样本平均数和样本标准差估计总体,在此类题型中学生对公式的转化有一定的困难,需细细推敲.
高中数学人教A版 (2019)必修 第二册9.2 用样本估计总体教学设计: 这是一份高中数学人教A版 (2019)必修 第二册9.2 用样本估计总体教学设计,共4页。
人教A版 (2019)必修 第二册9.2 用样本估计总体教案及反思: 这是一份人教A版 (2019)必修 第二册9.2 用样本估计总体教案及反思,共4页。
高中数学9.2 用样本估计总体教案及反思: 这是一份高中数学9.2 用样本估计总体教案及反思,共6页。教案主要包含了总体集中趋势的估计,总体离散程度的估计,典例分析,巩固练习等内容,欢迎下载使用。