高中数学人教A版 (2019)选择性必修 第三册6.2 排列与组合优秀课件ppt
展开6.2.1- 6.2.2 排列与排列数
1.理解并掌握排列、排列数的概念,能用列举法、树状图法列出简单的排列.
2.掌握排列数公式及其变式,并能运用排列数公式熟练地进行相关计算.
3.掌握有限制条件的排列应用题的一些常用方法,并能运用排列的相关知识解一些简单的排列应用题.
重点:理解排列的定义及排列数的计算
难点:运用排列解决计算问题
两个原理的联系与区别
1.联系:分类加法计数原理和分步乘法计数原理都是解决计数问题最基本、最重要的方法.
2.区别
| 分类加法计数原理 | 分步乘法计数原理 |
区别一 | 完成一件事共有n类办法,关键词是“分类” | 完成一件事共有n个步骤,关键词是“分步” |
区别二 | 每类办法中的每种方法都能独立地完成这件事,它是独立的、一次的且每种方法得到的都是最后结果,只需一种方法就可完成这件事 | 除最后一步外,其他每步得到的只是中间结果,任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有各个步骤都完成了,才能完成这件事 |
区别三 | 各类办法之间是互斥的、并列的、独立的 | 各步之间是关联的、独立的,“关联”确保不遗漏,“独立”确保不重复 |
一、排列的相关概念
1.排列:一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.
2.相同排列:两个排列的元素完全相同,且元素的排列顺序也相同.
名师点析理解排列应注意的问题
(1)排列的定义中包括两个基本内容,一是“取出元素”,二是“按一定顺序排列”.
(2)定义中的“一定顺序”说明了排列的本质:有序.
二、排列数与排列数公式
1.排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做
从n个不同元素中取出m个元素的排列数,用符号表示.
2.排列数公式:=n(n-1)(n-2)…(n-m+1)=,这里m,n∈N*,并且m≤n.
3.全排列和阶乘:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列.这时,排列数公式中m=n,即有=n(n-1)(n-2)×…×3×2×1.也就是说,将n个不同的元素全部取出的排列数,等于正整数1到n的连乘积.正整数1到n的连乘积,叫做n的阶乘,用n!表示.于是,n个元素的全排列数公式可以写成=n!.另外,我们规定,0!=1.
1.下列问题中:
①10本不同的书分给10名同学,每人一本;
②10位同学互通一次电话;
③10位同学互通一封信;
④10个没有任何三点共线的点构成的线段.
属于排列的有( )
A.1个 B.2个 C.3个 D.4个
一、问题探究
问题1. 从甲、乙、丙三名同学中选出2人参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动.
如果把上面问题中被取出的对象叫做元素,则问题可叙述为:从3个不同的元素中任意取
出2个,并按一定的顺序排成一列,共有多少种不同的排列方法?
问题2. 从1,2,3,4这4个数字中选出3个能构成多少个无重复数字的三位数?
同样,问题2可以归结为:
从4个不同的元素中任意取出3个,并按一定的顺序排成一列,共有多少种不同的排列方法?
问题3. 你认为“排列”和“排列数”是同一个概念吗?它们有什么区别?
二、典例解析
例1. 某省中学足球队赛预选赛每组有6支队,每支队都要与同组的其他各队在主、客场
分别比赛1场,那么每组共进行多少场比赛?
例2. (1)一张餐桌上有5盘不同的菜,甲、乙、丙3名同学每人从中各取1盘菜,共有多少种不同的取法?
(2)学校食堂的一个窗口共卖5种菜,甲、乙、丙3名同学每人从中选一种,共有多少种不同的选法?
例3. 计算:(1)
例4.用0~9这10个数字,可以组成多少个没有重复数字的三位数?
1.此类题目从不同的视角可以选择不同的方法,我们用各种方法解决这个题的目的是:希望通过对本题的感悟,能掌握更多的解决这类问题的方法.
2.元素分析法最基本,位置分析法对重要元素区别对待,间接法对对立面比较容易求解的题目特别实用.
跟踪训练 有语文、数学、英语、物理、化学、生物6门课程,从中选4门安排在上午的4节课中,其中化学不排在第四节,共有多少种不同的安排方法?
1.从5本不同的书中选两本送给2名同学,每人一本,则不同的送书方法的种数为( )
A.5 B.10 C.20 D.60
2.设m∈N*,且m<15,则=( )
A.(20-m)(21-m)(22-m)(23-m)(24-m)(25-m)
B.(20-m)(19-m)(18-m)(17-m)(16-m)
C.(20-m)(19-m)(18-m)(17-m)(16-m)(15-m)
D.(19-m)(18-m)(17-m)(16-m)(15-m)
3.某次演出共有6位演员参加,规定甲只能排在第一个或最后一个出场,乙和丙必须排在相邻的顺序出场,不同的演出顺序共有( )
A.24种 B.144种 C.48种 D.96种
4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法.
5.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.
(1)这些四位数中偶数有多少个?能被5整除的有多少个?
(2)这些四位数中大于6 500的有多少个?
参考答案:
知识梳理
1.解析:由排列的定义可知①③是排列,②④不是排列.
答案:B
学习过程
一、问题探究
问题1. 分析:要完成的一件事是“选出2名同学参加活动,1名参加上午的活动,另1名参加下午的活动”,可以分两个步骤:
第1步,确定上午的同学,从3人中任选1人,有3种选法;
第2步,确定下午的同学,只能从剩下的2人中去选,有2种选法.
根据分步乘法计数原理,不同的选法种数为3×2=6.
问题
问题2.分析:从4个数中每次取出三个按“百位、十位、个位” 的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数,可以分三个步骤解决:
第1步,确定百位上的数字,从1、2、3、4这4个数中任取一个,有4种方法;
第2步,确定十位上的数字,只能从余下的3个数字中取,有3种方法;
第3步,确定个位上的数字,只能从余下的2个数字中取,有2种方法;
根据分步乘法计数原理,从1、2、3、4这4个不同的数字中,每次取出3个数字,按百位、十位、个位的顺序排成一列,不同的排列方法为4×3×2=24
因而共可得到24个不同的三位数,如图所示
同样,问题2可以归结为:
从4个不同的元素中任意取出3个,并按一定的顺序排成一列,共有多少种不同的排列方法?
不同的排列方法为4×3×2=24
上述问题1,2的共同特点是什么?你能将它们推广到一般情形吗?
问题3. “排列”与“排列数”是两个不同的概念,一个排列是指“从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列”,它不是一个数,而是具体的一件事.“排列数”是指“从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数”,它是一个数.
二、典例解析
例1. 分析:每组任意2支队之间进行的1场比赛,可以看作是从该组6支队中选取2支,按“主队、客队”的顺序排成的一个排列.
解:可以先从这6支队中选1支为主队,然后从剩下的5支队中选1支为客队.
按分步乘法计数原理,每组进行的比赛场数为
6×5=30.
例2. 分析:3名同学每人从5盘不同的菜中取1盘菜,可看作是从这5盘菜中任取3盘,放在3个位置(给3名同学)的一个排列;而3名同学每人从食堂窗口的5种菜中选1种,每人都有5种选法,不能看成一个排列.
解: (1)可以先从这5盘菜中取1盘给同学甲,然后从剩下的4盘菜中取1盘给同学乙,最后从剩下的3盘菜中取1盘给同学丙.按分步乘法计数原理,不同的取法种数为
5×4×3=60.
(2)可以先让同学甲从5种菜中选1种,有5种选法;再让同学乙从5种菜中选1种,也有5种选法;最后让同学丙从5种菜中选1种,同样有5种选法.
按分步乘法计数原理,不同的取法种数为
5×5×5=125.
问题3. “排列”与“排列数”是两个不同的概念,一个排列是指“从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列”,它不是一个数,而是具体的一件事.“排列数”是指“从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数”,它是一个数.
例3. 解:根据排列
(1)
(2)
(3)
(4)
由例3可以
即
例4.分析:在0~9这10个数字中,因为0不能在百位上,而其他9个数字可以在任意数位上,因此0是一个特殊的元素。一般地,我们可以从特殊元素的位置入手来考虑问题。
解法1:由于三位数的百位上的数字不能是0,所以可以分两步完成:
第1步,确定百位上的数字可以从1~9这9个数字中取出1个,有种取法;第2步,确定十位和个位上的数字,可以从剩下的9个数中取2个, 有种取法; 如图
根据分步乘法计数原理,所求的三位数的个数为 9×9×8648.
解法2:如图,符合条件的三位数可以分成三类:第1类,每一位数字都不是0的三位数,可以从1~9这9个数字中取出3个,有种取法;第2类,个位上的数字是0的三位数,可以从剩下的9个数中取出2个放在百位和十位,有种取法;第3类,十位上的数字是0的三位数,可以从剩下的9个数字中取出2个放在百位和个位,有种取法.根据分类加法计数原理,所求三位数的个数为=9×8×7+9×8+9×8=648.
解法3:从0~9这10个数字中选取3个的排列数为,其中0在百位上的排列数为,它们的差就是用这10个数组成的没有重复数字的三位数的个数,
即所求三位数的个数为10×9×89×8648.
1.此类题目从不同的视角可以选择不同的方法,我们用各种方法解决这个题的目的是:希望通过对本题的感悟,能掌握更多的解决这类问题的方法.
2.元素分析法最基本,位置分析法对重要元素区别对待,间接法对对立面比较容易求解的题目特别实用.
跟踪训练 解:(方法一 分类法)分两类:
第1类,化学被选上,有种不同的安排方法;
第2类,化学不被选上,有种不同的安排方法.
故共有=300(种)不同的安排方法.
(方法二 分步法)第1步,第四节有种排法;第2步,其余三节有种排法,故共有=300(种)不同的安排方法.
(方法三 间接法)从6门课程中选4门安排在上午,有种排法,而化学排第四节,有种排法,故共有=300(种)不同的安排方法.
达标检测
1.解析:此问题相当于从5个不同元素中取出2个元素的排列数,即共有 =20(种)不同的送书方法.
答案:C
2.解析: 是指从20-m开始依次连续的6个数相乘,即(20-m)(19-m)(18-m)(17-m)(16-m)(15-m).
答案:C
3.解析:第1步,先安排甲有种不同的演出顺序;第2步,安排乙和丙有种不同的演出顺序;第3步,安排剩余的三个演员有种不同的演出顺序.根据分步计数原理,共有=96(种)不同的演出顺序.故选D.
答案:D
4.解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有 =8×7×6×5=1 680(种).
答案:1 680
5.解:(1)偶数的个位数只能是2、4、6,有种排法,其他位上有种排法,由分步乘法计数原理,知共有四位偶数=360(个);能被5整除的数个位必须是5,故有=120(个).
(2)最高位上是7时大于6 500,有种,最高位上是6时,百位上只能是7或5,故有2×种.由分类加法计数原理知,这些四位数中大于6 500的共有+2×=160(个).
高中数学人教A版 (2019)选择性必修 第三册6.2 排列与组合教课内容ppt课件: 这是一份高中数学人教A版 (2019)选择性必修 第三册<a href="/sx/tb_c4000352_t3/?tag_id=26" target="_blank">6.2 排列与组合教课内容ppt课件</a>,共26页。PPT课件主要包含了创设情境揭示课题,阅读精要研讨新知,例题研讨,学习例题的正规表达,学习例题的常规方法,从例题中学会思考,如何看例题,小组互动,探索与发现思考与感悟,归纳小结回顾重点等内容,欢迎下载使用。
人教A版 (2019)选择性必修 第三册6.2 排列与组合教学课件ppt: 这是一份人教A版 (2019)选择性必修 第三册6.2 排列与组合教学课件ppt,共24页。PPT课件主要包含了理解排列数的概念等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第三册6.2 排列与组合获奖课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第三册6.2 排列与组合获奖课件ppt,文件包含新人教A版数学选择性必修三621排列+622排列数课件41524pptx、新人教A版数学选择性必修三621排列+622排列数学案41524docx、新人教A版数学选择性必修三621排列+622排列数分层练习基础练+能力练41524docx等3份课件配套教学资源,其中PPT共33页, 欢迎下载使用。