高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式优质课ppt课件
展开1.结合古典概型,了解利用概率的加法公式和乘法公式推导出全概率公式的过程;2.理解全概率公式的形式并会利用全概率公式计算概率;3.了解贝叶斯公式以及公式的简单应用.
在上节计算按对银行储蓄卡密码的概率时,我们首先把一个复杂事件表示为一些简单事件运算的结果,然后利用概率的加法公式和乘法公式求其概率,下面我们再看一个求复杂事件概率的问题.
按照某种标准,将一个复杂事件表示为两个互斥事件的并,再由概率的加法公式和乘法公式求得这个复杂事件的概率。
例1. 某学校有A,B两家餐厅,王同学第1天午餐时随机地选择一家餐厅用餐.如果第1天去A餐厅,那么第2天去A餐厅的概率为0.6;如果第1天去B餐厅,那么第2天去A餐厅的概率为0.8.计算王同学第2天去A餐厅用餐的概率.
分析:第2天去哪家餐厅用餐的概率受第1天在哪家餐厅用餐的影响,可根据第1天可能去的餐厅,将样本空间表示为“第1天去A餐厅”和“第1天去B餐厅”两个互斥事件的并,利用全概率公式求解。
例2:有3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数分别占总数的25%,30%,45%.(1)任取一个零件,计算它是次品的概率;(2)如果取到的零件是次品,计算它是第i(i=1,2,3)台车床加工的概率.
分析:取到的零件可能来自第1台车床,也可能来自第2台或第3台车床,有3种可能.设B=“任取一零件为次品”,Ai=“零件为第i台车床加工”(i=1,2,3),如图所示,可将事件B表示为3个两两互斥事件的并,利用全概率公式可以计算出事件B的概率.
(1)由全概率公式,得P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+ P(A3)P(B|A3) =0.25×0.06+0.3×0.05+0.45×0.05=0.0525
问题2:例5中P(Ai), P(Ai|B)得实际意义是什么?
例6:在数字通信中,信号是由数字0和1组成的序列。由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知发送信号0时,接收为0和1的概率分别为0.9和0.1;发送信号1时,接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的.
(1)分别求接收的信号为0和1的概率;*(2)已知接收的信号为0,求发送的信号是1的概率.
分析:设A=“发送的信号为0”,B=“接收到的信号为0”.为便于求解,我们可将目中所包含的各种信息用图直观表示。
1.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为0.25,那么他答对题目的概率为( )C.0.5D.0
【解析】选A.用A表示事件“考生答对了”,用B表示“考生知道正确答案”,用 表示“考生不知道正确答案”,则P(B)=0.5,P( )=0.5,P(A|B)=100%,P(A| )=0.25,则P(A)=P(AB)+P(A )=P(A|B)P(B)+P(A| )P( )=1×0.5+0.25×0.5=0.625.
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________.
【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= ×0.85+ ×0.64+ ×0.45+ ×0.32=0.527 5.答案:0.527 5
3.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________.
5.某电子设备制造厂所用的元件是由三家元件制造厂提供的,根据以往的记录有以下的数据:
设这三家工厂的产品在仓库中是均匀混合的且不区别标志.(1)在仓库中随机地取一只元件,求它是次品的概率;(2)在仓库中随机地取一只元件,若已知取到的是次品,为分析此次品出自何厂,求此次品出自三家工厂生产的概率分别是多少?
【解析】设A表示“取到的是一只次品”,Bi(i=1,2,3)表示“所取到的产品是由第i家工厂提供的”.则B1,B2,B3是样本空间的一个划分,且P(B1)=0.15,P(B2)=0.80,P(B3)=0.05,P(A|B1)=0.02,P(A|B2)=0.01,P(A|B3)=0.03.(1)由全概率公式得P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+P(A|B3)P(B3)=0.012 5.
(2)该元件来自制造厂1的概率为:P(B1|A) 该元件来自制造厂2的概率为:P(B2|A)= 该元件来自制造厂3的概率为:P(B3|A)=
人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式教学演示课件ppt: 这是一份人教A版 (2019)选择性必修 第三册<a href="/sx/tb_c4000356_t3/?tag_id=26" target="_blank">7.1 条件概率与全概率公式教学演示课件ppt</a>,共25页。PPT课件主要包含了创设情境揭示课题,阅读精要研讨新知,例题研讨,学习例题的正规表达,学习例题的常规方法,从例题中学会思考,如何看例题,小组互动,探索与发现思考与感悟,归纳小结回顾重点等内容,欢迎下载使用。
数学人教A版 (2019)7.1 条件概率与全概率公式教学课件ppt: 这是一份数学人教A版 (2019)7.1 条件概率与全概率公式教学课件ppt,共23页。
高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式教学课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式教学课件ppt,共43页。PPT课件主要包含了学习目标,由因求果等内容,欢迎下载使用。