初中数学浙教版九年级上册3.2 图形的旋转一课一练
展开一、选择题
1.下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是( )
A.B.C.D.
2.将正六边形绕其对称中心旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是 ( )
A.120° B.60° C.45° D.30°
3.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.
则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.
其中正确的个数是( )
A.0 B.1 C.2 D.3
4.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是( )
A.∠BCB′=∠ACA′ B.∠ACB=2∠B
C.∠B′CA=∠B′AC D.B′C平分∠BB′A′
5.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是( )
A.(2,2) B.(1,2) C.(﹣1,2) D.(2,﹣1)
6.如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是( )
A.(5,0) B.(8,0) C.(0,5) D.(0,8)
7.如图,正方形ABCD的对角线相交于点O,Rt△OEF绕点O旋转,在旋转过程中,两个图形重叠部分的面积是正方形面积的( )
A. B. C. D.
8.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为( )
A.4 B.6 C.3 D.3
二、填空题
9.如图,已知在平面上将△ABC绕B点旋转到△A′BC′的位置时,AA′∥BC,∠ABC=70°,则∠CBC′为 度.
10.如图,点E在正方形ABCD的边CD上,把△ADE绕点A顺时针旋转90°至△ABF位置,如果AB=,∠EAD=30°,那么点E与点F之间的距离等于 .
11.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为 .
12.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=______.
13.如图,在▱ABCD中,∠A=70°,将▱ABCD绕顶点B顺时针旋转到▱A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1= .
14.如图所示,在直角坐标系中,△A′B′C′是由△ABC绕点P旋转一定的角度而得,其中A(1,4),B(0,2),C(3,0),则旋转中心点P的坐标是 .
三、作图题
15.已知在平面直角坐标系中,Rt△ABC的位置如图所示(方格小正方形的边长为1).
(1)把△ABC绕原点O逆时针方向旋转90°得△A1B1C1,A、B、C的对应点分别为A1、B1、C1.请画出△A1B1C1,并直接写出点A1、B1、C1的坐标:A1 ,B1 ,C1 ;
(2)线段AB、A1B1的中点分别为M、N,则△OMN的面积为 平方单位.
四、解答题
16.如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.
(1)线段DC= ;
(2)求线段DB的长度.
17.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
18.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:
(1)EA是∠QED的平分线;
(2)EF2=BE2+DF2.
参考答案
1.答案为:D
2.答案为:B
3.答案为:D.
4.答案为:C.
5.答案为:A.
6.答案为:B.
7.答案为:A.
8.答案为:B
9.答案为:40°.
10.答案为:2.
11.答案为:90°;
12.答案为:20°.
13.答案为:40°.
14.答案是:(5,0).
15.解:(1)如图,△A1B1C1即为所求;由图可知:A1(﹣5,1)、B1(﹣1,5)、C1(﹣1,1).
(2)由图知:M(3,3)、N(﹣3,3);∴△OMN的面积:S=0.5×6×3=9.
16.解:(1)∵AC=AD,∠CAD=60°,
∴△ACD是等边三角形,
∴DC=AC=4.
故答案是:4;
(2)作DE⊥BC于点E.
∵△ACD是等边三角形,
∴∠ACD=60°,
又∵AC⊥BC,
∴∠DCE=∠ACB﹣∠ACD=90°﹣60°=30°,
∴Rt△CDE中,DE=DC=2,
CE=DC•cs30°=4×=2,
∴BE=BC﹣CE=3﹣2=.
∴Rt△BDE中,BD===.
17.解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,
∴AE=AD,AC=AB,∠BAC=∠DAE,
∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,
在△AEC和△ADB中,
,
∴△AEC≌△ADB(SAS);
(2)∵四边形ADFC是菱形,且∠BAC=45°,
∴∠DBA=∠BAC=45°,
由(1)得:AB=AD,
∴∠DBA=∠BDA=45°,
∴△ABD为直角边为2的等腰直角三角形,
∴BD2=2AB2,即BD=2,
∴AD=DF=FC=AC=AB=2,
∴BF=BD﹣DF=2﹣2.
18.证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,
∴QB=DF,AQ=AF,∠BAQ=∠DAF,
∵∠EAF=45°,
∴∠DAF+∠BAE=45°,
∴∠QAE=45°,
∴∠QAE=∠FAE,
在△AQE和△AFE中
,
∴△AQE≌△AFE(SAS),
∴∠AEQ=∠AEF,
∴EA是∠QED的平分线;
(2)由(1)得△AQE≌△AFE,
∴QE=EF,
在Rt△QBE中,
QB2+BE2=QE2,
又∵QB=DF,
∴EF2=BE2+DF2.
浙教版3.2 图形的旋转同步测试题: 这是一份浙教版3.2 图形的旋转同步测试题,共16页。试卷主要包含了2图形的旋转,5°,【答案】D,【答案】A,【答案】C,【答案】B等内容,欢迎下载使用。
浙教版九年级上册3.2 图形的旋转当堂达标检测题: 这是一份浙教版九年级上册3.2 图形的旋转当堂达标检测题,共10页。试卷主要包含了下列现象等内容,欢迎下载使用。
初中数学浙教版九年级上册3.2 图形的旋转优秀同步测试题: 这是一份初中数学浙教版九年级上册3.2 图形的旋转优秀同步测试题,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。