数学八年级上册第一章 勾股定理3 勾股定理的应用课时训练
展开北师大版数学八年级上册
1.3《勾股定理的应用》课时练习
一、选择题
1.如图,阴影部分是一个长方形,则长方形的面积是( )
A.3 cm2 B.4 cm2 C.5 cm2 D.6 cm2
2.如图,一棵大树被大风刮断后,折断处离地面8m,树的顶端离树根6m,则这棵树在折断之前的高度是( )
A.18m B.10m C.14m D.24m
3.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )
A.4 m B.3 m C.5 m D.7 m
4.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( )
A.12 m B.13 m C.16 m D.17 m
5.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm至D点,则橡皮筋被拉长了( )
A.2 cm B.3 cm C.4 cm D.5 cm
6.将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是( )
A.5≤h≤12 B.5≤h≤24 C.11≤h≤12 D.12≤h≤24
7.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )
A.90米 B.100米 C.120米 D.150米
8.一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需( ).
A.6秒 B.5秒 C.4秒 D.3秒
二、填空题
9.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行 米.
10.如图,轮船甲从港口O出发沿北偏西25°的方向航行8海里,同时轮船乙从港口O出发沿南偏西65°的方向航行15海里,这时两轮船相距 海里.
11.有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.
12.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是 cm.
13.如图,从电线杆离地面6m处向地面拉一条长10m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有 m.
14.如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为 米.
三、解答题
15.为了丰富少年儿童的业余生活,某社区要在如图中的AB所在的直线上建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA=1.5km,DB=1.0km,试问:图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等?
16.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.
(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?
17.如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?
18.《中华人民共和国道路交通管理条例》规定:小汽车在城市道路上行驶速度不得超过70千米/时.如图,一辆小汽车在一条城市道路上直道行驶,某一时刻刚好行驶到车速检测仪正前方30米C处,过了2秒后,测得小汽车与车速检测仪间的距离为50米,请问:这辆小汽车超速了吗?
答案解析
1.答案为:C.
2.答案为:A.
3.答案为:A.
4.答案为:D.
5.答案为:A.
6.答案为:C;
7.答案为:B.
8.答案为:C
9.答案为:10.
10.答案为:17;
11.答案为:5m.
12.答案为:8.
13.答案为:8.
14.答案为:7;
15.解:由题意可得:设AE=xkm,则EB=(2.5﹣x)km,
∵AC2+AE2=EC2,BE2+DB2=ED2,EC=DE,
∴AC2+AE2=BE2+DB2,
∴1.52+x2=(2.5﹣x)2+12,
解得:x=1.
答:图书室E应该建在距点A1km处,才能使它到两所学校的距离相等.
16.解:(1)MN不会穿过原始森林保护区.理由如下:
过点C作CH⊥AB于点H.
设CH=x m.
由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.
在Rt△ACH中,AH=CH=x m,
在Rt△HBC中,BC=2x m.由勾股定理,得HB=x m.
∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.
∴MN不会穿过原始森林保护区.
(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.
根据题意,得=(1+25%)×.解得y=25.
经检验,y=25是原方程的根.
∴原计划完成这项工程需要25天.
17.解:设旗杆未折断部分的长为x米,则折断部分的长为(16-x)米,
根据勾股定理得:x2+82=(16-x)2,解得x=6,即旗杆在离底部6米处断裂.
18.解:∵AC=30米,AB=50米,在Rt△ABC中,由勾股定理得BC=40米,∴小汽车速度为20米/秒=72千米/时>70千米/时,∴小汽车超速了
北师大版八年级上册3 勾股定理的应用当堂达标检测题: 这是一份北师大版八年级上册3 勾股定理的应用当堂达标检测题,共8页。试卷主要包含了单选题,填空题,应用题等内容,欢迎下载使用。
初中数学北师大版八年级上册3 勾股定理的应用同步测试题: 这是一份初中数学北师大版八年级上册3 勾股定理的应用同步测试题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
北师大版八年级上册3 勾股定理的应用测试题: 这是一份北师大版八年级上册3 勾股定理的应用测试题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。