2022版高考数学大一轮复习作业本58《随机事件的概率》(含答案详解)
展开一、选择题
一个三位自然数百位、十位、个位上的数字依次为a,b,c,当且仅当a>b,b<c时,称该三位自然数为“凹数”(如213,312等).若a,b,c∈{1,2,3,4},且a,b,c互不相同,则这个三位数为“凹数”的概率是( )
A.eq \f(1,6) B.eq \f(5,24) C.eq \f(1,3) D.eq \f(7,24)
如图,在A,B两点间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条且使每条网线通过最大信息量,则选取的三条网线由A到B可通过的信息总量为6的概率是( )
A.eq \f(1,4) B.eq \f(1,3) C.eq \f(1,2) D.eq \f(2,3)
已知向量a=(x,y),b=(1,-2),从6张大小相同,分别标有号码1,2,3,4,5,6的卡片中,有放回地抽取两张,x,y分别表示第一次、第二次抽取的卡片上的号码,则满足a·b>0的概率是( )
A.eq \f(1,12) B.eq \f(3,4) C.eq \f(1,5) D.eq \f(1,6)
袋子中装有大小相同的5个小球,分别有2个红球、3个白球.现从中随机抽取2个小球,则这2个小球中既有红球也有白球的概率为( )
A.eq \f(3,4) B.eq \f(7,10) C.eq \f(4,5) D.eq \f(3,5)
在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )
A.eq \f(3,4) B.eq \f(5,8) C.eq \f(1,2) D.eq \f(1,4)
做抛掷两颗骰子的试验,用(x,y)表示结果,其中x表示第一颗骰子正面朝上的点数,y表示第二颗骰子正面朝上的点数,则x+y>10的概率是( )
A.eq \f(2,5) B.eq \f(5,12) C.eq \f(1,6) D.eq \f(1,12)
设事件A,B,已知P(A)=eq \f(1,5),P(B)=eq \f(1,3),P(A∪B)=eq \f(8,15),则A,B之间的关系一定为( )
A.两个任意事件 B.互斥事件 C.非互斥事件 D.对立事件
若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,
则实数a的取值范围是( )
A.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,4),2)) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,4),\f(3,2))) C.eq \b\lc\[\rc\](\a\vs4\al\c1(\f(5,4),\f(3,2))) D.eq \b\lc\(\rc\](\a\vs4\al\c1(\f(5,4),\f(4,3)))
公元五世纪,数学家祖冲之估计圆周率的值的范围是3.141 592 6<π<3.141 592 7.为纪念祖冲之在圆周率上的成就,把3.141 592 6称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们从小数点后的7位数字1,4,1,5,9,2,6中随机选取2位数字,整数部分3不变,那么得到的数大于3.14的概率为( )
A.eq \f(28,31) B.eq \f(19,21) C.eq \f(22,31) D.eq \f(17,21)
同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( )
A.eq \f(1,3) B.eq \f(1,2) C.eq \f(2,3) D.eq \f(5,6)
随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4 500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:
根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是( )
A.eq \f(7,15) B.eq \f(2,5) C.eq \f(11,15) D.eq \f(13,15)
我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )
A.134石 B.169石 C.338石 D.1 365石
二、填空题
一根绳子长6米,绳子上有5个节点将绳子6等分,现从5个节点中随机选一个将绳子剪断,则所得的两段绳长均不小于2米的概率为 .
“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象.某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9 600人,则可估计该地区对“键盘侠”持反对态度的有 人.
抛掷一粒骰子,观察掷出的点数,设事件A为“出现奇数点”,事件B为“出现2点”,
已知P(A)=eq \f(1,2),P(B)=eq \f(1,6),则“出现奇数点或2点”的概率为________.
若采用随机模拟的方法估计某运动员射击击中目标的概率,先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数:
7527 0293 7140 9857 0347 4373 8636
6947 1417 4698 0371 6233 2616 8045
6011 3661 9597 7424 7610 4281
根据以上数据估计该运动员射击4次至少击中3次的概率为 .
\s 0 参考答案
答案为:C
解析:由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理由1,2,4组成的三位自然数共6个;由1,3,4组成的三位自然数也是6个;由2,3,4组成的三位自然数也是6个.所以共有6+6+6+6=24(个).当b=1时,有214,213,314,412,312,413,共6个“凹数”;当b=2时,有324,423,共2个“凹数”.
所以这个三位数为“凹数”的概率P=eq \f(6+2,24)=eq \f(1,3).
答案为:A
解析:设这6条网线从上到下分别是a,b,c,d,e,f,任取3条有:(a,b,c),(a,b,d),(a,b,e),(a,b,f),(a,c,d),(a,c,e),(a,c,f),(a,d,e),(a,d,f),(a,e,f),(b,c,d),(b,c,e),(b,c,f),(b,d,e),(b,d,f),(b,e,f),(c,d,e),(c,d,f),(c,e,f),(d,e,f),共20个不同的取法,选取的三条网线由A到B可通过的信息总量为6的取法有:(a,b,f),(a,c,e),(a,d,e),(b,c,e),(b,d,e),共5个不同的取法,所以选取的三条网线由A到B可通过的信息总量为6的概率是eq \f(1,4).
答案为:D
解析:设(x,y)表示一个基本事件,则两次抽取卡片的所有基本事件有6×6=36个.
a·b>0,即x-2y>0,满足x-2y>0的基本事件有(3,1),(4,1),(5,1),(6,1),
(5,2),(6,2),共6个,所以所求概率P=eq \f(6,36)=eq \f(1,6).故选D.
答案为:D
解析:设2个红球分别为a,b,3个白球分别为A,B,C,从中随机抽取2个,
则有(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(A,B),(A,C),
(B,C),共10个基本事件,其中既有红球也有白球的基本事件有6个,
则所求概率为P=eq \f(6,10)=eq \f(3,5).
答案为:C
解析:由题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,
符合题意的取法有2种,故所求概率P=eq \f(1,2).
答案为:D
解析:(x,y)的所有基本事件共有6×6=36(个),事件“x+y>10”包含(5,6),(6,5),(6,6),共3个基本事件.根据古典概型的概率计算公式可知,x+y>10的概率是eq \f(1,12).故选D.
答案为:B
解析:因为P(A)+P(B)=eq \f(1,5)+eq \f(1,3)=eq \f(8,15)=P(A∪B),所以A,B之间的关系一定为互斥事件.
答案为:D.
解析:由题意可得eq \b\lc\{\rc\ (\a\vs4\al\c1(0
2022版高考数学大一轮复习作业本69《坐标系》(含答案详解): 这是一份2022版高考数学大一轮复习作业本69《坐标系》(含答案详解),共4页。
2022版高考数学大一轮复习作业本68《复数》(含答案详解): 这是一份2022版高考数学大一轮复习作业本68《复数》(含答案详解),共4页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
2022版高考数学大一轮复习作业本47《椭圆》(含答案详解): 这是一份2022版高考数学大一轮复习作业本47《椭圆》(含答案详解),共5页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。