搜索
    上传资料 赚现金
    英语朗读宝

    专题15化学反应原理综合——三年(2019-2021)高考化学真题分项汇编(全国通用)(解析版)

    专题15化学反应原理综合——三年(2019-2021)高考化学真题分项汇编(全国通用)(解析版)第1页
    专题15化学反应原理综合——三年(2019-2021)高考化学真题分项汇编(全国通用)(解析版)第2页
    专题15化学反应原理综合——三年(2019-2021)高考化学真题分项汇编(全国通用)(解析版)第3页
    还剩55页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题15化学反应原理综合——三年(2019-2021)高考化学真题分项汇编(全国通用)(解析版)

    展开

    这是一份专题15化学反应原理综合——三年(2019-2021)高考化学真题分项汇编(全国通用)(解析版),共58页。
    专题15 化学反应原理综合

    1.(2021·山东卷)2−甲氧基−2−甲基丁烷(TAME)常用作汽油原添加剂。在催化剂作用下,可通过甲醇与烯烃的液相反应制得,体系中同时存在如图反应:
    反应Ⅰ:+CH3OH △H1
    反应Ⅱ:+CH3OH△H2
    反应Ⅲ: △H3
    回答下列问题:
    (1)反应Ⅰ、Ⅱ、Ⅲ以物质的量分数表示的平衡常数Kx与温度T变化关系如图所示。据图判断,A和B中相对稳定的是__(用系统命名法命名);的数值范围是___(填标号)。
    A.1

    (2)为研究上述反应体系的平衡关系,向某反应容器中加入1.0molTAME,控制温度为353K,测得TAME的平衡转化率为α。已知反应Ⅲ的平衡常数Kx3=9.0,则平衡体系中B的物质的量为___mol,反应Ⅰ的平衡常数Kx1=___。同温同压下,再向该容器中注入惰性溶剂四氢呋喃稀释,反应Ⅰ的化学平衡将__(填“正向移动”“逆向移动”或“不移动”)平衡时,A与CH3OH物质的量浓度之比c(A):c(CH3OH)=___。
    (3)为研究反应体系的动力学行为,向盛有四氢呋喃的另一容器中加入一定量A、B和CH3OH。控制温度为353K,A、B物质的量浓度c随反应时间t的变化如图所示。代表B的变化曲线为__(填“X”或“Y”);t=100s时,反应Ⅲ的正反应速率v正__逆反应速率v逆(填“>”“<”或“=)。

    【答案】(1)2−甲基−2−丁烯 D
    (2)0.9α 逆向移动 1:10
    (3)X <
    【解析】
    (1)由平衡常数Kx与温度T变化关系曲线可知,反应Ⅰ、Ⅱ、Ⅲ的平衡常数的自然对数随温度升高(要注意横坐标为温度的倒数)而减小,说明3个反应均为放热反应,即△H1<0、△H2<0、△H3<0,因此,A的总能量高于B的总能量,能量越低越稳定,A和B中相对稳定的是B,其用系统命名法命名为2−甲基−2−丁烯;由盖斯定律可知,Ⅰ−Ⅱ=Ⅲ,则△H1−△H2=△H3<0,因此△H1<△H2,由于放热反应的△H越小,其绝对值越大,则的数值范围是大于1,选D。
    (2)向某反应容器中加入1.0molTAME,控制温度为353K,测得TAME的平衡转化率为α,则平衡时n(TAME)=(1−α) mol,n(A)+n(B)=n(CH3OH)= α mol。已知反应Ⅲ的平衡常数Kx3=9.0,则=9.0,将该式代入上式可以求出平衡体系中B的物质的量为0.9α mol,n(A)=0.1α mol,反应Ⅰ的平衡常数Kx1=。同温同压下,再向该容器中注入惰性溶剂四氢呋喃稀释,反应Ⅰ的化学平衡将向着分子数增大的方向移动,即逆向移动。平衡时,TAME的转化率变大,但是平衡常数不变,A与CH3OH物质的量浓度之比不变,c(A):c(CH3OH)=0.1α:α=1:10。
    (3)温度为353K,反应Ⅲ的平衡常数Kx3=9.0,=9.0。由A、B物质的量浓度c随反应时间t的变化曲线可知,X代表的平衡浓度高于Y,则代表B的变化曲线为X;由母线的变化趋势可知,100s 以后各组分的浓度仍在变化, t=100s时,因此,反应Ⅲ正在向逆反应方向移动,故其正反应速率v正小于逆反应速率v逆,填<。
    2.(2021·浙江卷)含硫化合物是实验室和工业上的常用化学品。请回答:
    (1)实验室可用铜与浓硫酸反应制备少量:。判断该反应的自发性并说明理由_______。
    (2)已知。时,在一恒容密闭反应器中充入一定量的和,当反应达到平衡后测得、和的浓度分别为、和。
    ①该温度下反应的平衡常数为_______。
    ②平衡时的转化率为_______。
    (3)工业上主要采用接触法由含硫矿石制备硫酸。
    ①下列说法正确的是_______。
    A.须采用高温高压的反应条件使氧化为
    B.进入接触室之前的气流无需净化处理
    C.通入过量的空气可以提高含硫矿石和的转化率
    D.在吸收塔中宜采用水或稀硫酸吸收以提高吸收速率
    ②接触室结构如图1所示,其中1~4表示催化剂层。图2所示进程中表示热交换过程的是_______。
    A. B. C. D. E. F. G.

    ③对于放热的可逆反应,某一给定转化率下,最大反应速率对应的温度称为最适宜温度。在图3中画出反应的转化率与最适宜温度(曲线Ⅰ)、平衡转化率与温度(曲线Ⅱ)的关系曲线示意图(标明曲线Ⅰ、Ⅱ)_______。

    (4)一定条件下,在溶液体系中,检测得到pH−时间振荡曲线如图4,同时观察到体系由澄清→浑浊→澄清的周期性变化。可用一组离子方程式表示每一个周期内的反应进程,请补充其中的2个离子方程式。

    Ⅰ.
    Ⅱ.①_______;
    Ⅲ.;
    Ⅳ.②_______。
    【答案】(1)不同温度下都能自发,是因为
    (2)
    (3)C BDF
    (4)
    【解析】
    (1)实验室可用铜与浓硫酸反应制备少量的反应为,由于该反应,因此该反应在任何温度下都能自发进行。
    (2)①根据题中所给的数据可以求出该温度下的平衡常数为 .
    ②平衡时的转化率为;
    (3)①A.在常压下催化氧化为的反应中,的转化率已经很高,工业上有采用高压的反应条件,A说法不正确;
    B.进入接触室之前的气流中含有会使催化剂中毒的物质,需经净化处理以防止催化剂中毒,B说法不正确;
    C.通入过量的空气可以增大氧气的浓度,可以使含硫矿石充分反应,并使化学平衡向正反应方向移动,因此可以提高含硫矿石和的转化率;
    D.与水反应放出大量的热,在吸收塔中若采用水或稀硫酸吸收,反应放出的热量会使硫酸形成酸雾从而影响被水吸收导致的吸收速率减小,因此,在吸收塔中不宜采用水或稀硫酸吸收,D说法不正确。
    综上所述,相关说法正确的是C;
    ②反应混合物在热交换气中与原料气进行热交换,在热交换过程中,反应混合物不与催化剂接触,化学反应速率大幅度减小,故虽然反应混合物的温度降低,的转化率基本不变,因此,图2所示进程中表示热交换过程的是、、,因此选BDF;
    ③对于放热的可逆反应,该反应的最适宜温度为催化剂的催化活性最好时所对应的温度,在该温度下化学反应速率最大,的转化率也最大;当温度高于最适宜温度后,催化剂的催化活性逐渐减小,催化剂对化学反应速率的影响超过了温度升高对化学反应速率的影响,因此化学反应速率逐渐减小,的转化率也逐渐减小;由于该反应为放热反应,随着温度的升高,的平衡转化率减小;由于反应混合物与催化剂层的接触时间较少,在实际的反应时间内反应还没有达到化学平衡状态,故在相应温度下的转化率低于其平衡转化率。因此,反应的转化率与最适宜温度(曲线Ⅰ)、平衡转化率与温度(曲线Ⅱ)的关系曲线示意图可表示如下:.
    (4)由时间振荡曲线可知,在溶液体系中,溶液的呈先增大后减小的周期性变化,同时观察到体系由澄清→浑浊→澄清的周期性变化,硫化钠与硫酸反应生成,,然后发生,该过程溶液的基本不变,溶液保持澄清;溶液变浑浊时被氧化为,即发生,该过程溶液的增大;溶液又变澄清时又被氧化为,发生,该过程溶液的在减小。因此可以推测该过程中每一个周期内的反应进程中依次发生了如下离子反应:、、、。
    3.(2021·广东卷)我国力争于2030年前做到碳达峰,2060年前实现碳中和。CH4与CO2重整是CO2利用的研究热点之一。该重整反应体系主要涉及以下反应:
    a)CH4(g)+CO2(g)2CO(g)+2H2(g) ∆H1
    b)CO2(g)+H2(g)CO(g)+H2O(g) ∆H2
    c)CH4(g)C(s)+2H2(g) ∆H3
    d)2CO(g)CO2(g)+C(s) ∆H4
    e)CO(g)+H2(g)H2O(g)+C(s) ∆H5
    (1)根据盖斯定律,反应a的∆H1=_______(写出一个代数式即可)。
    (2)上述反应体系在一定条件下建立平衡后,下列说法正确的有_______。
    A.增大CO2与CH4的浓度,反应a、b、c的正反应速率都增加
    B.移去部分C(s),反应c、d、e的平衡均向右移动
    C.加入反应a的催化剂,可提高CH4的平衡转化率
    D.降低反应温度,反应a~e的正、逆反应速率都减小
    (3)一定条件下,CH4分解形成碳的反应历程如图所示。该历程分_______步进行,其中,第_______步的正反应活化能最大。

    (4)设K为相对压力平衡常数,其表达式写法:在浓度平衡常数表达式中,用相对分压代替浓度。气体的相对分压等于其分压(单位为kPa)除以p0(p0=100kPa)。反应a、c、e的ln K随(温度的倒数)的变化如图所示。

    ①反应a、c、e中,属于吸热反应的有_______(填字母)。
    ②反应c的相对压力平衡常数表达式为K=_______。
    ③在图中A点对应温度下、原料组成为n(CO2):n(CH4)=1:1、初始总压为100kPa的恒容密闭容器中进行反应,体系达到平衡时H2的分压为40kPa。计算CH4的平衡转化率,写出计算过程_______。
    (5)CO2用途广泛,写出基于其物理性质的一种用途:_______。
    【答案】(1)∆H2+∆H3−∆H5或∆H3−∆H4
    (2)AD
    (3)4 4
    (4)ac 68%
    (5)做冷冻剂
    【分析】
    根据盖斯定律计算未知反应的反应热;根据影响化学反应速率和化学平衡的因素判断反应速率的变化及转化率的变化;根据图像及曲线高低判断反应进程和活化能的相对大小;根据平衡时反应物的分压计算平衡转化率;根据CO2的物理性质推测CO2的用途。
    【解析】
    (1)根据题目所给出的反应方程式关系可知,a=b+c−e=c−d,根据盖斯定律则有∆H1=∆H2+∆H3−∆H5=∆H3−∆H4;
    (2)A.增大CO2和CH4的浓度,对于反应a、b、c来说,均增大了反应物的浓度,反应的正反应速率增大,A正确;
    B.移去部分C(s),没有改变反应体系中的压强,反应的正逆反应速率均不变,平衡不移动,B错误;
    C.催化剂可以同等条件下增大正逆反应速率,只能加快反应进程,不改变反应的平衡状态,平衡转化率不变,C错误;
    D.降低温度,体系的总能量降低,正、逆反应速率均减小,D正确;
    故答案选AD;
    (3)由图可知,反应过程中能量变化出现了4个峰,即吸收了4次活化能,经历了4步反应;且从左往右看4次活化能吸收中,第4次对应的峰最高,即正反应方向第4步吸收的能量最多,对应的正反应活化能最大。
    (4)①随着温度的升高,反应a和c的ln K增大,说明K的数值增大,反应向正反应方向进行,反应a和c为吸热反应,同理反应e的ln K减小,说明K的减小,反应向逆反应方向进行,反应e为放热反应,故答案为ac;
    ②用相对分压代替浓度,则反应c的平衡常数表达式K=;
    ③由图可知,A处对应反应c的ln K=0,即K==1,解方程的p2(H2)=p(CH4),已知反应平衡时p(H2)=40kPa,则有p(CH4)=16kPa,且初始状态时p(CH4)=×100kPa=50kPa,故CH4的平衡转化率为×100%=68%;
    (5)固态CO2即为干冰,干冰用于制冷或人工降雨均是利用其物理性质。
    【点睛】
    本题难点在于K与关系曲线的判断,在曲线中斜率为正为放热反应,斜率为负为吸热反应。
    4.(2021·全国乙卷)一氯化碘(ICl)是一种卤素互化物,具有强氧化性,可与金属直接反应,也可用作有机合成中的碘化剂。回答下列问题:
    (1)历史上海藻提碘中得到一种红棕色液体,由于性质相似,Liebig误认为是ICl,从而错过了一种新元素的发现,该元素是_______。
    (2)氯铂酸钡()固体加热时部分分解为、和,376.8℃时平衡常数,在一硬质玻璃烧瓶中加入过量,抽真空后,通过一支管通入碘蒸气(然后将支管封闭),在376.8℃,碘蒸气初始压强为。376.8℃平衡时,测得烧瓶中压强为,则_______,反应的平衡常数K=_______(列出计算式即可)。
    (3)McMorris测定和计算了在136~180℃范围内下列反应的平衡常数。


    得到和均为线性关系,如下图所示:

    ①由图可知,NOCl分解为NO和反应的_______0(填“大于”或“小于”)
    ②反应的K=_______(用、表示):该反应的_______0(填“大于”或“小于”),写出推理过程_______。
    (4)Kistiakowsky曾研究了NOCl光化学分解反应,在一定频率(v)光的照射下机理为:


    其中表示一个光子能量,表示NOCl的激发态。可知,分解1mol的NOCl需要吸收_______mol光子。
    【答案】(1)溴(或)
    (2)24.8
    (3)大于 大于 设,即,由图可知:则:,即,因此该反应正反应为吸热反应,即大于0
    (4)0.5
    【解析】
    (1)红棕色液体,推测为溴单质,因此错过发现的元素是溴(或);
    (2)由题意玻376.8℃时璃烧瓶中发生两个反应:(s)(s)+(s)+2(g)、Cl2(g)+I2(g)2ICl(g)。(s)(s)+(s)+2(g)的平衡常数,则平衡时p2(Cl2)=,平衡时p(Cl2)=100Pa,设到达平衡时I2(g)的分压减小pkPa,则,376.8℃平衡时,测得烧瓶中压强为,则0.1+20.0+p=32.5,解得p=12.4,则平衡时2p=2×12.4kPa=24.8kPa;则平衡时,I2(g)的分压为(20.0−p)kPa=(20×103−12.4×103)Pa,24.8kPa=24.8×103Pa,p(Cl2)=0.1kPa=100Pa,因此反应的平衡常数K=;
    (3)①结合图可知,温度越高,越小,lgKp2越大,即Kp2越大,说明升高温度平衡正向移动,则NOCl分解为NO和反应的大于0;
    ②Ⅰ.
    Ⅱ.
    Ⅰ+Ⅱ得,则的K=;该反应的大于0;推理过程如下:设,即,由图可知:则:,即,因此该反应正反应为吸热反应,即大于0;
    (4)Ⅰ.
    Ⅱ.
    Ⅰ+Ⅱ得总反应为2NOCl+hv=2NO+Cl2,因此2molNOCl分解需要吸收1mol光子能量,则分解1mol的NOCl需要吸收0.5mol光子。
    5.(2021·全国甲卷)二氧化碳催化加氢制甲醇,有利于减少温室气体二氧化碳。回答下列问题:
    (1)二氧化碳加氢制甲醇的总反应可表示为:

    该反应一般认为通过如下步骤来实现:


    总反应的_______;若反应①为慢反应,下列示意图中能体现上述反应能量变化的是_______(填标号),判断的理由是_______。
    A. B. C. D.
    (2)合成总反应在起始物时,在不同条件下达到平衡,设体系中甲醇的物质的量分数为,在℃下的、在下的如图所示。

    ①用各物质的平衡分压表示总反应的平衡常数,表达式_______;
    ②图中对应等压过程的曲线是_______,判断的理由是_______;
    ③当时,的平衡转化率____,反应条件可能为___或___。
    【答案】(1)−49 A ΔH1为正值,ΔH2为和ΔH为负值,反应①的活化能大于反应②的
    (2) b 总反应ΔH2.5MPa = p2,所以p1= 5.0Mpa 温度、压强和反应物的起始浓度(组成)
    (3)
    (4)升高温度,k增大使v逐渐提高,但α降低使v逐渐下降。ttm后,k增大对v的提高小于α引起的降低
    【解析】
    【分析】
    根据盖斯定律,用已知的热化学方程式通过一定的数学运算,可以求出目标反应的反应热;根据压强对化学平衡的影响,分析图中数据找到所需要的数据;根据恒压条件下总压不变,求出各组分的分压,进一步可以求出平衡常数;根据题中所给的速率公式,分析温度对速率常数及二氧化硫的转化率的影响,进一步分析对速率的影响。
    【解析】
    (1)由题中信息可知:
    ①SO2(g)+O2(g)⇌SO3(g) ∆H= −98kJ∙mol−1
    ②V2O4(s)+ SO3(g)⇌V2O5(s)+ SO2(g) ∆H2= −24kJ∙mol−1
    ③V2O4(s)+ 2SO3(g)⇌2VOSO4(s) ∆H1= −399kJ∙mol−1
    根据盖斯定律可知,③−②´2得2V2O5(s)+ 2SO2(g)⇌ 2VOSO4(s)+ V2O4(s),则∆H= ∆H1−2∆H2=( −399kJ∙mol−1)−( −24kJ∙mol−1)´2= −351kJ∙mol−1,所以该反应的热化学方程式为:2V2O5(s)+ 2SO2(g)⇌ 2VOSO4(s)+ V2O4(s) ∆H= −351 kJ∙mol−1;
    (2) SO2(g)+O2(g)⇌SO3(g),该反应是一个气体分子数减少的放热反应,故增大压强可以使化学平衡向正反应方向移动。因此,在相同温度下,压强越大,SO2的平衡转化率越大,所以,该反应在550℃、压强为5.0MPa条件下,SO2的平衡转化率一定高于相同温度下、压强为2.5MPa的,因此,p1=5.0MPa,由图中数据可知,α=0.975。影响α的因素就是影响化学平衡移动的因素,主要有反应物(N2和O2)的浓度、温度、压强等。
    (3)假设原气体的物质的量为100mol,则SO2、O2和N2的物质的量分别为2m mol、m mol和q mol,2m+m+q=3m+q=100,SO2的平衡转化率为α,则有下列关系:

    平衡时气体的总物质的量为n(总)= 2m(1−α)+m(1−α)+2mαmol+q mol,则SO3的物质的量分数为。该反应在恒压容器中进行,因此,SO3的分压p(SO3)=,p(SO2)=,p(O2)=,在该条件下,SO2(g)+ O2(g)⇌2SO3(g) 的Kp=。
    (4) 由于该反应是放热反应,温度升高后α降低。由题中信息可知,v=,升高温度,k增大使v逐渐提高,但α降低使v逐渐下降。当t<tm,k增大对v的提高大于α引起的降低;当t>tm,k增大对v的提高小于α引起的降低。
    【点睛】
    本题有关化学平衡常数的计算是一个难点,尤其题中给的都是字母型数据,这无疑增大了难度。这也是对考生的意志的考验,只要巧妙假设、小心求算,还是可以得到正确结果的,毕竟有关化学平衡的计算是一种熟悉的题型。本题的另一难点是最后一问,考查的是速率公式与化学平衡的综合理解,需要明确化学反应速率与速率常数及平衡转化率之间的函数关系,才能作出正确的解答。所以,耐心和细心才是考好的保证。
    10.[2020新课标Ⅱ]天然气的主要成分为CH4,一般还含有C2H6等烃类,是重要的燃料和化工原料。
    (1)乙烷在一定条件可发生如下反应:C2H6(g)= C2H4(g)+H2(g) ΔH,相关物质的燃烧热数据如下表所示:
    物质
    C2H6(g)
    C2H4(g)
    H2(g)
    燃烧热ΔH/( kJ·mol−1)
    −1560
    −1411
    −286
    ①ΔH1=_________ kJ·mol−1。
    ②提高该反应平衡转化率的方法有_________、_________。
    ③容器中通入等物质的量的乙烷和氢气,在等压下(p)发生上述反应,乙烷的平衡转化率为α。反应的平衡常数Kp=_________(用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)。
    (2)高温下,甲烷生成乙烷的反应如下:2CH4C2H6+H2。反应在初期阶段的速率方程为:r=k×,其中k为反应速率常数。
    ①设反应开始时的反应速率为r1,甲烷的转化率为α时的反应速率为r2,则r2=_____ r1。
    ②对于处于初期阶段的该反应,下列说法正确的是_________。
    A.增加甲烷浓度,r增大 B.增加H2浓度,r增大
    C.乙烷的生成速率逐渐增大 D.降低反应温度,k减小
    (3)CH4和CO2都是比较稳定的分子,科学家利用电化学装置实现两种分子的耦合转化,其原理如下图所示:

    ①阴极上的反应式为_________。
    ②若生成的乙烯和乙烷的体积比为2∶1,则消耗的CH4和CO2体积比为_________。
    【答案】(1)①137 ②升高温度 减小压强(增大体积) ③
    (2)①1-α ②AD
    (3)①CO2+2e−=CO+O2− ②6∶5
    【解析】
    【分析】
    (1) ①先写出三种气体的燃烧热的热化学方程式,然后根据盖斯定律进行计算,得到目标反应的∆H;
    ②反应C2H6(g)C2H4(g) + H2(g)为气体体积增大的吸热反应,升高温度、减小压强平衡等都向正反应方向移动;
    ③根据已知乙烷的转化率,设起始时加入的乙烷和氢气各为1mol,列出三段式,求出平衡时各物质的分压,带入平衡常数的计算公式进行计算;
    (2) ①根据r=k×,若r1=kc,甲烷转化率为甲烷的浓度为c(1−),则r2= kc(1−);
    ②根据反应初期的速率方程为:r=k×,其中k为反应速率常数,据此分析速率变化的影响因素;
    (3) ①由图可知,CO2在阴极得电子发生还原反应,电解质传到O2−,据此写出电极反应;
    ②令生成乙烯和乙烷分别为2体积和1体积,根据阿伏加德罗定律,同温同压下,气体体积比等于物质的量之比,再根据得失电子守恒,得到发生的总反应,进而计算出为消耗CH4和CO2的体积比。
    【解析】
    (1)①由表中燃烧热数值可知:
    ①C2H6(g)+O2(g)=2CO2(g) +3H2O(l) ∆H1= −1560kJ∙mol−1;②C2H4(g)+3O2(g)=2CO2(g) +2H2O(l) ∆H2= −1411kJ∙mol−1;③H2(g)+O2(g)=H2O(l) ∆H3= −286kJ∙mol−1;根据盖斯定律可知,①−②−③得C2H6(g) =C2H4(g) + H2(g),则∆H= ∆H1−∆H2−∆H3=( −1560kJ∙mol−1)−( −1411kJ∙mol−1)− ( −286kJ∙mol−1)=137kJ∙mol−1,故答案为137;
    ②反应C2H6(g) C2H4(g) + H2(g)为气体体积增大的吸热反应,升高温度、减小压强平衡都向正反应方向移动,故提高该反应平衡转化率的方法有升高温度、减小压强(增大体积);
    ③设起始时加入的乙烷和氢气各为1mol,列出三段式,
    C2H6(g) C2H4(g) + H2(g)
    起始(mol) 1 0 1
    转化(mol) α α
    平衡(mol) 1− 1+
    平衡时,C2H6、C2H4和H2平衡分压分别为p、p和p,则反应的平衡常数为Kp=;
    (2) ①根据r=k×,若r1= kc,甲烷转化率为甲烷的浓度为c(1−),则r2= kc(1−),所以r2=(1−)r1;
    ②A.增大反应物浓度反应速率增大,故A说法正确;
    B.由速率方程可知,初期阶段的反应速率与氢气浓度无关,故B说法错误;
    C.反应物甲烷的浓度逐渐减小,结合速率方程可知,乙烷的生成速率逐渐减小,故C说法错误;
    D.化学反应速率与温度有关,温度降低,反应速率常数减小,故D正确。
    答案选AD。
    (3) ①由图可知,CO2在阴极得电子发生还原反应,电极反应为CO2+2e−=CO+O2−;
    ②令生成乙烯和乙烷分别为2体积和1体积,根据阿伏加德罗定律,同温同压下,气体体积比等于物质的量之比,再根据得失电子守恒,得到发生的总反应为:6CH4+5CO2=2C2H4+ C2H6+5H2O+5CO,即消耗CH4和CO2的体积比为6:5。故答案为:6:5。
    11.[2020新课标Ⅲ]二氧化碳催化加氢合成乙烯是综合利用CO2的热点研究领域。回答下列问题:
    (1)CO2催化加氢生成乙烯和水的反应中,产物的物质的量之比n(C2H4)∶n(H2O)=__________。当反应达到平衡时,若增大压强,则n(C2H4)___________(填“变大”“变小”或“不变”)。
    (2)理论计算表明,原料初始组成n(CO2)∶n(H2)=1∶3,在体系压强为0.1MPa,反应达到平衡时,四种组分的物质的量分数x随温度T的变化如图所示。

    图中,表示C2H4、CO2变化的曲线分别是______、______。CO2催化加氢合成C2H4反应的ΔH______0(填“大于”或“小于”)。
    (3)根据图中点A(440K,0.39),计算该温度时反应的平衡常数Kp=_________(MPa)−3(列出计算式。以分压表示,分压=总压×物质的量分数)。
    (4)二氧化碳催化加氢合成乙烯反应往往伴随副反应,生成C3H6、C3H8、C4H8等低碳烃。一定温度和压强条件下,为了提高反应速率和乙烯选择性,应当___________________。
    【答案】(1)1∶4 变大
    (2)d c 小于
    (3)或等
    (4)选择合适催化剂等
    【解析】
    【分析】
    根据质量守恒定律配平化学方程式,可以确定产物的物质的量之比。根据可逆反应的特点分析增大压强对化学平衡的影响。根据物质的量之比等于化学计量数之比,从图中找到关键数据确定代表各组分的曲线,并计算出平衡常数。根据催化剂对化反应速率的影响和对主反应的选择性,工业上通常要选择合适的催化剂以提高化学反应速率、减少副反应的发生。
    【解析】
    (1)CO2催化加氢生成乙烯和水,该反应的化学方程式可表示为2CO2+6H2 ⇌ CH2 = CH2+4H2O,因此,该反应中产物的物质的量之比n(C2H4):n(H2O)=1:4。由于该反应是气体分子数减少的反应,当反应达到平衡状态时,若增大压强,则化学平衡向正反应方向移动,n(C2H4)变大。
    (2) 由题中信息可知,两反应物的初始投料之比等于化学计量数之比;由图中曲线的起点坐标可知,c和a所表示的物质的物质的量分数之比为1:3、d和b表示的物质的物质的量分数之比为1:4,则结合化学计量数之比可以判断,表示乙烯变化的曲线是d,表示二氧化碳变化曲线的是c。由图中曲线的变化趋势可知,升高温度,乙烯的物质的量分数减小,则化学平衡向逆反应方向移动,则该反应为放热反应,∆H小于0。
    (3) 原料初始组成n(CO2)∶n(H2)=1∶3,在体系压强为0.1Mpa建立平衡。由A点坐标可知,该温度下,氢气和水的物质的量分数均为0.39,则乙烯的物质的量分数为水的四分之一,即,二氧化碳的物质的量分数为氢气的三分之一,即,因此,该温度下反应的平衡常数(MPa)−3=(MPa)−3。
    (4)工业上通常通过选择合适的催化剂,以加快化学反应速率,同时还可以提高目标产品的选择性,减少副反应的发生。因此,一定温度和压强下,为了提高反应速率和乙烯的选择性,应当选择合适的催化剂。
    【点睛】
    本题确定图中曲线所代表的化学物质是难点,其关键在于明确物质的量的分数之比等于各组分的物质的量之比,也等于化学计量数之比(在初始投料之比等于化学计量数之比的前提下,否则不成立)。
    12.[2020江苏卷]CO2/ HCOOH循环在氢能的贮存/释放、燃料电池等方面具有重要应用。

    (1)CO2催化加氢。在密闭容器中,向含有催化剂的KHCO3溶液(CO2与KOH溶液反应制得)中通入H2生成HCOO−,其离子方程式为__________;其他条件不变,HCO3−转化为HCOO−的转化率随温度的变化如图−1所示。反应温度在40℃~80℃范围内,HCO3−催化加氢的转化率迅速上升,其主要原因是_____________。
    (2) HCOOH燃料电池。研究 HCOOH燃料电池性能的装置如图−2所示,两电极区间用允许K+、H+通过的半透膜隔开。

    ①电池负极电极反应式为_____________;放电过程中需补充的物质A为_________(填化学式)。
    ②图−2所示的 HCOOH燃料电池放电的本质是通过 HCOOH与O2的反应,将化学能转化为电能,其反应的离子方程式为_______________。
    (3) HCOOH催化释氢。在催化剂作用下, HCOOH分解生成CO2和H2可能的反应机理如图−3所示。

    ①HCOOD催化释氢反应除生成CO2外,还生成__________(填化学式)。
    ②研究发现:其他条件不变时,以 HCOOK溶液代替 HCOOH催化释氢的效果更佳,其具体优点是_______________。
    【答案】(1)
    温度升高反应速率增大,温度升高催化剂的活性增强
    (2)① H2SO4
    ②或
    (3)①HD ②提高释放氢气的速率,提高释放出氢气的纯度
    【解析】
    【分析】
    (1)根据元素守恒和电荷守恒书写离子方程式;从温度对反应速率的影响以及温度对催化剂的影响的角度分析。
    (2)该装置为原电池装置,放电时HCOOˉ转化为被氧化,所以左侧为负极,Fe3+转化为Fe2+被还原,所以右侧为正极。
    (3)HCOOH生成HCOOˉ和H+分别与催化剂结合,在催化剂表面HCOOˉ分解生成CO2和Hˉ,之后在催化剂表面Hˉ和第一步产生的H+反应生成H2。
    【解析】
    (1)含有催化剂的KHCO3溶液中通入H2生成HCOOˉ,根据元素守恒和电荷守恒可得离子方程式为:+H2HCOOˉ+H2O;反应温度在40℃~80℃范围内时,随温度升高,活化分子增多,反应速率加快,同时温度升高催化剂的活性增强,所以的催化加氢速率迅速上升;
    (2)①左侧为负极,碱性环境中HCOOˉ失电子被氧化为,根据电荷守恒和元素守恒可得电极反应式为HCOOˉ+2OHˉ-2eˉ= +H2O;电池放电过程中,钾离子移向正极,即右侧,根据图示可知右侧的阴离子为硫酸根,而随着硫酸钾不断被排除,硫酸根逐渐减少,铁离子和亚铁离子进行循环,所以需要补充硫酸根,为增强氧气的氧化性,溶液最好显酸性,则物质A为H2SO4;
    ②根据装置图可知电池放电的本质是HCOOH在碱性环境中被氧气氧化为,根据电子守恒和电荷守恒可得离子方程式为2HCOOH+O2+2OHˉ = 2+2H2O或2HCOOˉ+O2= 2;
    (3)①根据分析可知HCOOD可以产生HCOOˉ和D+,所以最终产物为CO2和HD(Hˉ与D+结合生成);
    ②HCOOK是强电解质,更容易产生HCOOˉ和K+,更快的产生KH,KH可以与水反应生成H2和KOH,生成的KOH可以吸收分解产生的CO2,从而使氢气更纯净,所以具体优点是:提高释放氢气的速率,提高释放出氢气的纯度。
    【点睛】
    第3小题为本题难点,要注意理解图示的HCOOH催化分解的反应机理,首先HCOOH分解生成H+和HCOOˉ,然后HCOOˉ再分解成CO2和Hˉ,Hˉ和H+反应生成氢气。
    13.[2020天津卷]利用太阳能光解水,制备的H2用于还原CO2合成有机物,可实现资源的再利用。回答下列问题:
    Ⅰ. 半导体光催化剂浸入水或电解质溶液中,光照时可在其表面得到产物
    (1)图1为该催化剂在水中发生光催化反应的原理示意图。光解水能量转化形式为 。
    (2)若将该催化剂置于Na2SO3溶液中,产物之一为 ,另一产物为 。若将该催化剂置于AgNO3溶液中,产物之一为O2,写出生成另一产物的离子反应式 。

    Ⅱ. 用H2还原CO2可以在一定条件下合成CH3OH(不考虑副反应)

    (3)某温度下,恒容密闭容器中,CO2和H2的起始浓度分别为 a mol·L−1和3 a mol·L−1,反应平衡时,CH3OH的产率为b,该温度下反应平衡常数的值为 。
    (4)恒压下,CO2和H2的起始物质的量比为1∶3时,该反应在无分子筛膜时甲醇的平衡产率和有分子筛膜时甲醇的产率随温度的变化如图2所示,其中分子筛膜能选择性分离出H2O。
    ①甲醇平衡产率随温度升高而降低的原因为 。
    ②P点甲醇产率高于T点的原因为 。
    ③根据图2,在此条件下采用该分子筛膜时的最佳反应温度为 °C。
    Ⅲ. 调节溶液pH可实现工业废气CO2的捕获和释放
    (5)的空间构型为 。已知25℃碳酸电离常数为Ka1、Ka2,当溶液pH=12时,。
    【答案】(1)光能转化为化学能
    (2)H2

    (3)
    (4)①该反应为放热反应,温度升高,平衡逆向移动(或平衡常数减小)
    ②分子筛膜从反应体系中不断分离出H2O,有利于反应正向进行,甲醇产率升高
    ③210
    (5)平面(正)三角形


    【解析】
    【分析】
    I.根据图示分析反应以及能量转化形式;根据氧化还原反应的规律分析产物、书写离子反应式;
    II.用三段式和平衡常数表达式计算平衡常数,依据外界条件对化学平衡的影响分析作答;
    III.用价层电子对互斥理论判断的空间构型,利用电离平衡常数表达式计算粒子浓度的比值。
    【解析】
    I.(1)根据图示,该催化剂在水中发生光催化反应的方程式为2H2O2H2↑+O2↑,光解水能量转化形式为光能转化为化学能,故答案为:光能转化为化学能。
    (2)若将该催化剂置于Na2SO3溶液中,产物之一为,被氧化成,则H+被还原为H2,即另一产物为H2;若将该催化剂置于AgNO3溶液中,产物之一为O2,氧元素的化合价升高,O2为氧化产物,则生成另一产物的反应为还原反应,由于Ag+得电子能力大于H+,故生成另一产物的离子反应式为Ag++e−=Ag,故答案为:H2,Ag++e−=Ag。
    II.(3) CO2和H2的起始浓度分别为 a mol‧L−1和3 a mol‧L−1,CH3OH的产率为b,则生成的CH3OH物质的量浓度为abmol/L,根据三段式

    则反应的平衡常数K== =,故答案为:。
    (4)①该反应为放热反应(∆Hp2>p3;温度升高,反应I和II平衡逆向移动,反应III向正反应方向移动,所以T1温度时,三条曲线交与一点的原因为:T1时以反应III为主,反应III前后分子数相等,压强改变对平衡没有影响;
    (4).根据图示可知,温度越低,CO2的平衡转化率越大,CH3OH的平衡产率越大,压强越大,CO2的平衡转化率越大,CH3OH的平衡产率越大,所以选择低温和高压,答案选A。
    【点睛】
    本题为化学反应原理综合题,考查了盖斯定律、化学平衡常数的计算、勒夏特列原理进行图像的分析,难点为平衡常数的计算,巧用了三个反应的化学方程式,进行了数据的处理,得到反应III的各项数据,进行计算得到平衡常数。

    16.[2019新课标Ⅰ]水煤气变换[CO(g)+H2O(g)=CO2(g)+H2(g)]是重要的化工过程,主要用于合成氨、制氢以及合成气加工等工业领域中。回答下列问题:
    (1)Shibata曾做过下列实验:①使纯H2缓慢地通过处于721 ℃下的过量氧化钴CoO(s),氧化钴部分被还原为金属钴Co(s),平衡后气体中H2的物质的量分数为0.0250。
    ②在同一温度下用CO还原CoO(s),平衡后气体中CO的物质的量分数为0.0192。
    根据上述实验结果判断,还原CoO(s)为Co(s)的倾向是CO_________H2(填“大于”或“小于”)。
    (2)721 ℃时,在密闭容器中将等物质的量的CO(g)和H2O(g)混合,采用适当的催化剂进行反应,则平衡时体系中H2的物质的量分数为_________(填标号)。
    A.<0.25 B.0.25 C.0.25~0.50 D.0.50 E.>0.50
    (3)我国学者结合实验与计算机模拟结果,研究了在金催化剂表面上水煤气变换的反应历程,如图所示,其中吸附在金催化剂表面上的物种用❉标注。

    可知水煤气变换的ΔH________0(填“大于”“等于”或“小于”),该历程中最大能垒(活化能)E正=_________eV,写出该步骤的化学方程式_______________________。
    (4)Shoichi研究了467 ℃、489 ℃时水煤气变换中CO和H2分压随时间变化关系(如下图所示),催化剂为氧化铁,实验初始时体系中的和相等、和相等。

    计算曲线a的反应在30~90 min内的平均速率(a)=___________kPa·min−1。467 ℃时和随时间变化关系的曲线分别是___________、___________。489 ℃时和随时间变化关系的曲线分别是___________、___________。
    【答案】(1)大于
    (2)C
    (3)小于 2.02 COOH*+H*+H2O*COOH*+2H*+OH*(或H2O*H*+OH*)
    (4)0.0047 b c a d
    【解析】
    【分析】(1)由H2、CO与CoO反应后其气体物质的量分数判断二者的倾向大小;
    (2)根据三段式以及CO与H2的倾向大小关系综合判断;
    (3)根据反应物与生成物的相对能量差大小进行比较判断;根据反应物达到活化状态所需能量为活化能以及相对能量差值大小计算并比较最大能垒;根据最大能垒对应的反应历程对应的物质写出方程式;
    (4)根据图中曲线a在30~90 min内分压变化量计算平均反应速率;先根据CO与H2的倾向大小关系判断CO与H2的含量范围,然后根据温度变化对化学平衡的影响判断出在不同温度下曲线对应的物质。
    【解析】(1)H2还原氧化钴的方程式为:H2(g)+CoO(s)Co(s)+H2O(g);CO还原氧化钴的方程式为:CO(g)+CoO(s)Co(s)+CO2(g),平衡时H2还原体系中H2的物质的量分数()高于CO还原体系中CO的物质的量分数(),故还原CoO(s)为Co(s)的倾向是CO大于H2;
    (2)721 ℃时,在密闭容器中将等物质的量的CO(g)和H2O(g)混合,可设其物质的量为1mol,则
    CO(g)+H2O(g)CO2(g)+H2(g)
    起始(mol) 1 1 0 0
    转化(mol) x x x x
    平衡(mol) 1−x 1−x x x
    则平衡时体系中H2的物质的量分数=,因该反应为可逆反应,故x0.5,由此可判断最终平衡时体系中H2的物质的量分数介于0.25~0.50,故答案为C;
    (3)根据水煤气变换[CO(g)+H2O(g)=CO2(g)+H2(g)]并结合水煤气变换的反应历程相对能量可知,CO(g)+H2O(g)的能量(−0.32eV)高于CO2(g)+H2(g)的能量(−0.83eV),故水煤气变换的ΔH小于0;活化能即反应物状态达到活化状态所需能量,根据变换历程的相对能量可知,最大差值为:

    其最大能垒(活化能)E正=1.86−(−0.16)eV=2.02eV;该步骤的反应物为COOH+H+H2O=COOH+2H+OH;因反应前后COOH和1个H未发生改变,也可以表述成H2O=H+OH;
    (4)由图可知,30~90 min内a曲线对应物质的分压变化量Δp=(4.08−3.80)kPa=0.28 kPa,故曲线a的反应在30~90 min内的平均速率(a)==0.0047 kPa·min−1;由(2)中分析得出H2的物质的量分数介于0.25~0.5,CO的物质的量分数介于0~0.25,即H2的分压始终高于CO的分压,据此可将图分成两部分:

    由此可知,a、b表示的是H2的分压,c、d表示的是CO的分压,该反应为放热反应,故升高温度,平衡逆向移动,CO分压增加,H2分压降低,故467 ℃时PH2和PCO随时间变化关系的曲线分别是b、c;489 ℃时PH2和PCO随时间变化关系的曲线分别是a、d。
    【点睛】本题以水煤气交换为背景,考察化学反应原理的基本应用,较为注重学生学科能力的培养,难点在于材料分析和信息提取,图像比较新,提取信息能力较弱的学生,会比较吃力。第(3)问来源于我国化学工作者发表在顶级刊物Science中的文章“沉积在α−MoC上单层金原子对水煤气的低温催化反应”,试题以文章中的单原子催化能量变化的理论计算模型为情境,让学生认识、分析催化吸附机理及反应过程中的能量变化。本题属于连贯性综合题目,本题的解题关键在于第(1)问的信息理解与应用,若本题的第(1)问判断错误,会导致后续多数题目判断错误;第(2)问可以采取特殊值法进行赋值并结合极限法计算,考生若只是考虑到完全转化极限,则只能判断出H2的物质的量分数小于0.5,这是由于对题干的信息应用能力不熟练而导致;对于第(4)问中曲线对应物质的确定需根据第(1)(2)问得出的相关结论进行推断,需先确定物质对应曲线,然后再根据勒夏特列原理判读相关物质的变化。
    17.[2019新课标Ⅱ] 环戊二烯()是重要的有机化工原料,广泛用于农药、橡胶、塑料等生产。回答下列问题:
    (1)已知:(g) (g)+H2(g) ΔH1=100.3 kJ·mol −1 ①
    H2(g)+ I2(g) 2HI(g) ΔH2=−11.0 kJ·mol −1 ②
    对于反应:(g)+ I2(g) (g)+2HI(g) ③ ΔH3=___________kJ·mol −1。
    (2)某温度下,等物质的量的碘和环戊烯()在刚性容器内发生反应③,起始总压为105Pa,平衡时总压增加了20%,环戊烯的转化率为_________,该反应的平衡常数Kp=_________Pa。达到平衡后,欲增加环戊烯的平衡转化率,可采取的措施有__________(填标号)。
    A.通入惰性气体 B.提高温度
    C.增加环戊烯浓度 D.增加碘浓度
    (3)环戊二烯容易发生聚合生成二聚体,该反应为可逆反应。不同温度下,溶液中环戊二烯浓度与反应时间的关系如图所示,下列说法正确的是__________(填标号)。

    A.T1>T2
    B.a点的反应速率小于c点的反应速率
    C.a点的正反应速率大于b点的逆反应速率
    D.b点时二聚体的浓度为0.45 mol·L−1
    (4)环戊二烯可用于制备二茂铁(Fe(C5H5)2,结构简式为),后者广泛应用于航天、化工等领域中。二茂铁的电化学制备原理如下图所示,其中电解液为溶解有溴化钠(电解质)和环戊二烯的DMF溶液(DMF为惰性有机溶剂)。

    该电解池的阳极为____________,总反应为__________________。电解制备需要在无水条件下进行,原因为_________________________。
    【答案】(1)89.3
    (2)40% 3.56×104 BD
    (3)CD
    (4)Fe电极 Fe+2=+H2↑(Fe+2C5H6Fe(C5H5)2+H2↑)
    水会阻碍中间物Na的生成;水会电解生成OH−,进一步与Fe2+反应生成Fe(OH)2
    【解析】
    【分析】
    (1)利用盖斯定律解题;
    (2)利用差量法计算转化率;三行式法计算平衡常数;根据平衡移动原理解释;
    (3)通过外界因素对速率的影响和平衡状态的形成分析A、B、C选项,D选项观察图象计算;
    (4)根据阳极:升失氧;阴极:降得还进行分析确定阴阳极;根据题干信息中Na元素的变化确定环戊二烯得电子数和还原产物,进而写出电极反应式;注意Na与水会反应,Fe2+在碱性条件下生成沉淀。
    【解析】(1)根据盖斯定律①+②,可得反应③的ΔH=89.3kJ/mol;
    (2)假设反应前碘单质与环戊烯均为nmol,平衡时环戊烯反应了xmol,根据题意可知;
    (g)+I2(g)= (g)+2HI(g) 增加的物质的量
    1mol 1mol 1mol 2mol 1mol
    xmol 2n×20%
    得x=0.4nmol,转化率为0.4n/n×100%=40%;
    (g) + I2(g)= (g)+ 2HI(g)
    P(初) 0.5×105 0.5×105 0 0
    ΔP 0.5×105×40% 0.5×105×40% 0.5×105×40% 1×105×40%
    P(平) 0.3×105 0.3×105 0.2×105 0.4×105
    Kp==3.56×104;
    A.T、V一定,通入惰性气体,由于对反应物和生成物浓度无影响,速率不变,平衡不移动,故A错误;B.升高温度,平衡向吸热方向移动,环戊烯转化率升高,故B正确;C.增加环戊烯的浓度平衡正向移动,但环戊烯转化率降低,故C错误;D,增加I2的浓度,平衡正向移动,环戊烯转化率升高,故D正确;
    (3)A.温度越高化学反应速率越快,单位时间内反应物浓度减少越多,则T1v(逆),a点反应物浓度大于b点,故a点正反应速率大于b点,故C正确;D.b点时环戊二烯浓度由1.5mol/L减小到0.6mol/L,减少了0.9mol/L,因此生成二聚体0.45mol/L,故D正确。
    (4)根据阳极升失氧可知Fe为阳极;根据题干信息Fe−2e−=Fe2+,电解液中钠离子起到催化剂的作用使得环戊二烯得电子生成氢气,同时与亚铁离子结合生成二茂铁,故电极反应式为Fe+2=+H2↑;电解必须在无水条件下进行,因为中间产物Na会与水反应生成氢氧化钠和氢气,亚铁离子会和氢氧根离子结合生成沉淀。
    【点睛】本题以能力立意,考查提取信息、处理信息的能力及分析问题、解决问题的能力。充分体现了化学学科思想、学科方法、创新意识和学科价值,易错点第(2)小题平衡常数计算;第(4)小题电极反应式的书写。
    18.[2019新课标Ⅲ] 近年来,随着聚酯工业的快速发展,氯气的需求量和氯化氢的产出量也随之迅速增长。因此,将氯化氢转化为氯气的技术成为科学研究的热点。回答下列问题:
    (1)Deacon发明的直接氧化法为:4HCl(g)+O2(g)=2Cl2(g)+2H2O(g)。下图为刚性容器中,进料浓度比c(HCl) ∶c(O2)分别等于1∶1、4∶1、7∶1时HCl平衡转化率随温度变化的关系:

    可知反应平衡常数K(300℃)____________K(400℃)(填“大于”或“小于”)。设HCl初始浓度为c0,根据进料浓度比c(HCl)∶c(O2)=1∶1的数据计算K(400℃)=____________(列出计算式)。按化学计量比进料可以保持反应物高转化率,同时降低产物分离的能耗。进料浓度比c(HCl)∶c(O2)过低、过高的不利影响分别是____________。
    (2)Deacon直接氧化法可按下列催化过程进行:
    CuCl2(s)=CuCl(s)+Cl2(g) ΔH1=83 kJ·mol−1
    CuCl(s)+O2(g)=CuO(s)+Cl2(g) ΔH2=−20 kJ·mol−1
    CuO(s)+2HCl(g)=CuCl2(s)+H2O(g) ΔH3=−121 kJ·mol−1
    则4HCl(g)+O2(g)=2Cl2(g)+2H2O(g)的ΔH=_________ kJ·mol−1。
    (3)在一定温度的条件下,进一步提高HCl的转化率的方法是______________。(写出2种)
    (4)在传统的电解氯化氢回收氯气技术的基础上,科学家最近采用碳基电极材料设计了一种新的工艺方案,主要包括电化学过程和化学过程,如下图所示:

    负极区发生的反应有____________________(写反应方程式)。电路中转移1 mol电子,需消耗氧气__________L(标准状况)。
    【答案】(1)大于 O2和Cl2分离能耗较高、HCl转化率较低
    (2)﹣116
    (3)增加反应体系压强、及时除去产物
    (4)Fe3++e−=Fe2+,4Fe2++O2+4H+=4Fe3++2H2O 5.6
    【解析】
    【解析】(1)根据反应方程式知,HCl平衡转化率越大,平衡常数K越大,结合图像知升高温度平衡转化率降低,说明升高温度平衡向逆反应方向进行,则K(300℃)>K(400℃);
    由图像知,400℃时,HCl平衡转化率为84%,用三段式法对数据进行处理得:

    起始(浓度) c0 c0 0 0
    变化(浓度) 0.84c0 0.21c0 0.42c0 0.42c0
    平衡(浓度)(1−0.84)c0(1−0.21)c0 0.42c0 0.42c0
    则K=;根据题干信息知,进料浓度比过低,氧气大量剩余,导致分离产物氯气和氧气的能耗较高;进料浓度比过高,HCl不能充分反应,导致HCl转化率较低;
    (2)根据盖斯定律知,(反应I+反应II+反应III)×2得 ΔH=(ΔH1+ΔH2+ΔH3)×2=−116kJ·mol−1;
    (3)若想提高HCl的转化率,应该促使平衡正向移动,该反应为气体体积减小的反应,根据勒夏特列原理,可以增大压强,使平衡正向移动;也可以及时除去产物,减小产物浓度,使平衡正向移动;
    (4)电解过程中,负极区即阴极上发生的是得电子反应,元素化合价降低,属于还原反应,则图中左侧为负极反应,根据图示信息知电极反应为:Fe3++e-=Fe2+和4Fe2++O2+4H+=4Fe3++2H2O;电路中转移1 mol电子,根据电子得失守恒可知需消耗氧气的物质的量是1mol÷4=0.25mol,在标准状况下的体积为0.25mol×22.4L/mol=5.6L。
    19.[2019江苏] CO2的资源化利用能有效减少CO2排放,充分利用碳资源。
    (1)CaO可在较高温度下捕集CO2,在更高温度下将捕集的CO2释放利用。CaC2O4·H2O热分解可制备CaO,CaC2O4·H2O加热升温过程中固体的质量变化见下图。

    ①写出400~600 ℃范围内分解反应的化学方程式: ▲ 。
    ②与CaCO3热分解制备的CaO相比,CaC2O4·H2O热分解制备的CaO具有更好的CO2捕集性能,其原因是 ▲ 。
    (2)电解法转化CO2可实现CO2资源化利用。电解CO2制HCOOH的原理示意图如下。

    ①写出阴极CO2还原为HCOO−的电极反应式: ▲ 。
    ②电解一段时间后,阳极区的KHCO3溶液浓度降低,其原因是 ▲ 。
    (3)CO2催化加氢合成二甲醚是一种CO2转化方法,其过程中主要发生下列反应:
    反应Ⅰ:CO2(g)+H2(g)CO(g)+H2O(g) ΔH =41.2 kJ·mol−1
    反应Ⅱ:2CO2(g)+6H2(g)CH3OCH3(g)+3H2O(g) ΔH =﹣122.5 kJ·mol−1
    在恒压、CO2和H2的起始量一定的条件下,CO2平衡转化率和平衡时CH3OCH3的选择性随温度的变化如图。其中:

    CH3OCH3的选择性=×100%
    ①温度高于300 ℃,CO2平衡转化率随温度升高而上升的原因是 ▲ 。
    ②220 ℃时,在催化剂作用下CO2与H2反应一段时间后,测得CH3OCH3的选择性为48%(图中A点)。不改变反应时间和温度,一定能提高CH3OCH3选择性的措施有 ▲ 。
    【答案】(1)①CaC2O4CaCO3+CO↑
    ②CaC2O4·H2O热分解放出更多的气体,制得的CaO更加疏松多孔
    (2)①CO2+H++2e−HCOO−或CO2++2e−HCOO−+
    ②阳极产生O2,pH减小,浓度降低;K+部分迁移至阴极区
    (3)①反应Ⅰ的ΔH>0,反应Ⅱ的ΔH<0,温度升高使CO2转化为CO的平衡转化率上升,使CO2转化为CH3OCH3的平衡转化率下降,且上升幅度超过下降幅度
    ②增大压强,使用对反应Ⅱ催化活性更高的催化剂
    【解析】
    【分析】
    本题注重理论联系实际,引导考生认识并体会化学科学对社会发展的作用,试题以减少CO2排放,充分利用碳资源为背景,考查《化学反应原理》模块中方程式的计算、电化学、外界条件对化学反应速率和化学平衡的影响等基本知识;
    【解析】(1)①令CaC2O4·H2O的物质的量为1mol,即质量为146g,根据图像,第一阶段剩余固体质量为128,原固体质量为146 g,相差18 g,说明此阶段失去结晶水,第二阶段从剩余固体质量与第一阶段剩余固体质量相对比,少了28 g,相差1个CO,因此400℃~600℃范围内,分解反应方程式为CaC2O4CaCO3+CO↑。
    ②CaC2O4·H2O热分解放出更多的气体,制得的CaO更加疏松多孔,增加与CO2的接触面积,更好捕捉CO2。
    (2)①根据电解原理,阴极上得到电子,化合价降低,CO2+H++2e−HCOO−或CO2++2e−HCOO−+。
    ②阳极反应式为2H2O-4e-O2↑+4H+,阳极附近pH减小,H+与HCO3-反应,同时部分K+迁移至阴极区,所以电解一段时间后,阳极区的KHCO3溶液浓度降低。
    (3)①根据反应方程式,反应I为吸热反应,升高温度,平衡向正反应方向移动,CO2的转化率增大,反应II为放热反应,升高温度,平衡向逆反应方向进行,CO2的转化率降低,根据图像,上升幅度超过下降幅度,因此温度超过300℃时,CO2转化率上升。
    ②图中A点CH3OCH3的选择性没有达到此温度下平衡时CH3OCH3的选择性,依据CH3OCH3选择性公式,提高CH3OCH3选择性,不改变反应时间和温度时,根据反应II,可以增大压强,或者使用对反应II催化活性更高的催化剂。
    【点睛】本题的难点(1)是文字叙述,应根据图像和所学知识,结合所问问题进行分析解答;(2)电极反应式的书写,阴极反应是将CO2还原成HCOO-,先写出CO2+2e-→HCOO-,然后根据原子守恒和电荷守恒,得出CO2+H++2e−HCOO−,或者为CO2++2e−HCOO−+。
    20.[2019北京]氢能源是最具应用前景的能源之一,高纯氢的制备是目前的研究热点。
    (1)甲烷水蒸气催化重整是制高纯氢的方法之一。
    ①反应器中初始反应的生成物为H2和CO2,其物质的量之比为4∶1,甲烷和水蒸气反应的方程式是______________。
    ②已知反应器中还存在如下反应:
    i.CH4(g)+H2O(g)CO(g)+3H2(g) ΔH1
    ii.CO(g)+H2O(g)CO2(g)+H2(g) ΔH2
    iii.CH4(g)C(s)+2H2(g) ΔH3
    ……
    iii为积炭反应,利用ΔH1和ΔH2计算ΔH3时,还需要利用__________反应的ΔH。
    ③反应物投料比采用n(H2O)∶n(CH4)=4∶1,大于初始反应的化学计量数之比,目的是________________(选填字母序号)。
    a.促进CH4转化 b.促进CO转化为CO2 c.减少积炭生成
    ④用CaO可以去除CO2。H2体积分数和CaO消耗率随时间变化关系如下图所示。从t1时开始,H2体积分数显著降低,单位时间CaO消耗率_______(填“升高”“降低”或“不变”)。此时CaO消耗率约为35%,但已失效,结合化学方程式解释原因:____________________________。

    (2)可利用太阳能光伏电池电解水制高纯氢,工作示意图如下。通过控制开关连接K1或K2,可交替得到H2和O2。

    ①制H2时,连接_______________。
    产生H2的电极反应式是_______________。
    ②改变开关连接方式,可得O2。
    ③结合①和②中电极3的电极反应式,说明电极3的作用:________________________。
    【答案】(1)①CH4+2H2O4H2+CO2
    ②C(s)+2H2O(g)CO2(g)+2H2(g)或C(s)+ CO2(g)2CO(g)
    ③a b c
    ④降低 CaO+ CO2CaCO3,CaCO3覆盖在CaO表面,减少了CO2与CaO的接触面积
    (2)①K1 2H2O+2e−H2↑+2OH−
    ③制H2时,电极3发生反应:Ni(OH)2+ OH−−e−NiOOH+H2O。制O2时,上述电极反应逆向进行,使电极3得以循环使用
    【解析】
    【解析】(1)①由于生成物为H2和CO2,其物质的量之比为4:1,反应物是甲烷和水蒸气,因而反应方程式为CH4+2H2O4H2+CO2。
    ②ⅰ−ⅱ可得CH4(g)+CO2(g)2CO(g)+2H2(g),设为ⅳ,用ⅳ−ⅲ可得C(s)+CO2(g)2CO(g),因为还需利用C(s)+CO2(g)2CO(g)反应的焓变。
    ③初始反应n(H2O):n(CH4)=2:1,说明加入的水蒸气过量,又反应器中反应都存在一定可逆性,根据反应ⅰ知水蒸气浓度越大,甲烷的转化率越高,a正确;根据反应ⅱ知水蒸气浓度越大,CO的转化率越高,b正确;ⅰ和ⅱ产生氢气,使得氢气浓度变大,抑制反应ⅲ,积炭生成量减少,c正确。
    ④t1时CaO消耗率曲线斜率减小,因而单位时间内CaO的消耗率降低。CaO+ CO2CaCO3,CaCO3覆盖在CaO表面,减少了CO2与CaO的接触面积,因而失效。
    (2)①电极生成H2时,根据电极放电规律可知H+得到电子变为氢气,因而电极须连接负极,因而制H2时,连接K1,该电池在碱性溶液中,由H2O提供H+,电极反应式为2H2O+2e−=H2↑+2OH−。
    ③电极3上NiOOH和Ni(OH)2相互转化,其反应式为NiOOH+e−+H2ONi(OH)2+OH−,当连接K1时,Ni(OH)2失去电子变为NiOOH,当连接K2时,NiOOH得到电子变为Ni(OH)2,因而作用是连接K1或K2时,电极3分别作为阳极材料和阴极材料,并且NiOOH和Ni(OH)2相互转化提供电子转移。
    21.[2019天津] 多晶硅是制作光伏电池的关键材料。以下是由粗硅制备多晶硅的简易过程。

    回答下列问题:
    Ⅰ.硅粉与在300℃时反应生成气体和,放出热量,该反应的热化学方程式为________________________。的电子式为__________________。
    Ⅱ.将氢化为有三种方法,对应的反应依次为:



    (1)氢化过程中所需的高纯度可用惰性电极电解溶液制备,写出产生的电极名称______(填“阳极”或“阴极”),该电极反应方程式为________________________。

    (2)已知体系自由能变,时反应自发进行。三个氢化反应的与温度的关系如图1所示,可知:反应①能自发进行的最低温度是____________;相同温度下,反应②比反应①的小,主要原因是________________________。
    (3)不同温度下反应②中转化率如图2所示。下列叙述正确的是______(填序号)。
    a.B点: b.:A点点 c.反应适宜温度:℃
    (4)反应③的______(用,表示)。温度升高,反应③的平衡常数______(填“增大”、“减小”或“不变”)。
    (5)由粗硅制备多晶硅过程中循环使用的物质除、和外,还有______(填分子式)。
    【答案】Ⅰ.
    Ⅱ.
    (1)阴极 或
    (2)1000℃ 导致反应②的小
    (3)a、c
    (4) 减小
    (5)、
    【解析】
    【分析】
    Ⅰ.书写热化学方程式时一定要标注出各物质的状态,要将热化学方程式中焓变的数值与化学计量数对应。本题的反应温度需要标注为条件;
    Ⅱ.(1)惰性电极电解KOH溶液,实质是电解水,产生氢气的必为阴极,发生还原反应。
    (2)“看图说话”,将反应①的纵、横坐标对应起来看,即可顺利找到最低温度。影响自由能变的因素主要是焓变和熵变,分析发现熵变对反应②反而不利,说明焓变影响大,为主要影响因素;
    (3)据图判断化学平衡的建立和移动是分析的关键。注意时间是一个不变的量。
    (4)此问是盖斯定律的简单应用,对热化学方程式直接进行加减即可。
    【解析】Ⅰ.参加反应的物质是固态的Si、气态的HCl,生成的是气态的SiHCl3和氢气,反应条件是300℃,配平后发现SiHCl3的化学计量数恰好是1,由此可顺利写出该条件下的热化学方程式:Si(s)+3HCl(g) SiHCl3(g)+H2(g) ∆H=−225kJ·mol−1;SiHCl3中硅与1个H、3个Cl分别形成共价单键,由此可写出其电子式为:,注意别漏标3个氯原子的孤电子对;
    Ⅱ.(1)电解KOH溶液,阳极发生氧化反应而产生O2、阴极发生还原反应才产生H2;阴极的电极反应式可以直接写成2H++2e−=H2↑,或写成由水得电子也可以:2H2O+2e−=H2↑+2OH−;
    (2)由题目所给的图1可以看出,反应①(最上面那条线)当∆G=0时,对应的横坐标温度是1000℃;从反应前后气体分子数的变化来看,反应①的熵变化不大,而反应②中熵是减小的,可见熵变对反应②的自发更不利,而结果反应②的∆G更负,说明显然是焓变产生了较大的影响,即∆H2

    相关试卷

    【三年高考真题】最新三年化学高考真题分项汇编——专题15《化学反应原理综合》( 2023新高考地区专用):

    这是一份【三年高考真题】最新三年化学高考真题分项汇编——专题15《化学反应原理综合》( 2023新高考地区专用),文件包含专题15化学反应原理综合三年2020-2022高考真题化学分项汇编新高考专用解析版docx、专题15化学反应原理综合三年2020-2022高考真题化学分项汇编新高考专用原卷版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。

    三年高考(2019-2021)化学试题分项汇编专题15化学反应原理综合含答案:

    这是一份三年高考(2019-2021)化学试题分项汇编专题15化学反应原理综合含答案,文件包含三年高考2019-2021化学试题分项汇编专题15化学反应原理综合含答案doc、三年高考2019-2021化学试题分项汇编专题15化学反应原理综合学生版doc等2份试卷配套教学资源,其中试卷共92页, 欢迎下载使用。

    专题15 化学反应原理综合——三年(2019-2021)高考化学真题分项汇编(全国通用):

    这是一份专题15 化学反应原理综合——三年(2019-2021)高考化学真题分项汇编(全国通用),文件包含专题15化学反应原理综合三年2019-2021高考化学真题分项汇编全国通用解析版doc、专题15化学反应原理综合三年2019-2021高考化学真题分项汇编全国通用原卷版doc等2份试卷配套教学资源,其中试卷共86页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map