2016高考题数学文真题汇编(含答案)
展开
这是一份2016高考题数学文真题汇编(含答案),文件包含2016高考题数学文真题汇编-正文DOC、2016高考题数学文真题汇编-答案DOC等2份试卷配套教学资源,其中试卷共0页, 欢迎下载使用。
参考答案与解析专题1 集合与常用逻辑用语1.解析:选B.因为A={1,3,5,7},B={x|2≤x≤5},所以A∩B={3,5}.故选B.2.解析:选D.易知B={x|-3<x<3},又A={1,2,3},所以A∩B={1,2}.3.解析:选C.由补集的概念,得∁AB={0,2,6,10},故选C.4.解析:选A.由题知A∪B={1,3,4,5},所以∁U(A∪B)={2,6}.故选A.5.解析:选C.由x>y推不出x>|y|,由x>|y|能推出x>y,所以“x>y”是“x>|y|”的必要而不充分条件.6.解析:选A.当b<0时,f(x)在上单调递增,在上单调递减,∴f(x)min=f=-,即f(x)∈,又-∈,∴当f(x)=-时,f(f(x))min=f=-,故f(x)与f(f(x))有相等的最小值-;另一方面,取b=0,f(x)=x2与f(f(x))=x4有相等的最小值0,故选A.专题2 函 数1.解析:选B.法一:(通性通法)因为0<c<1,所以y=logcx在(0,+∞)单调递减,又0<b<a,所以logca<logcb,故选B.法二:(光速解法)取a=4,b=2,c=,则log4=->log2,排除A;4=2>2,排除C;<,排除D;故选B.2.解析:选D.法一:(通性通法)函数y=10lg x的定义域为(0,+∞),又当x>0时,y=10lg x=x,故函数的值域为(0,+∞).只有D选项符合.法二:(光速解法)易知函数y=10lg x中x>0,排除选项A、C;又10lg x必为正值,排除选项B.故选D.3.解析:选B.法一:(通性通法)由f(x)=f(2-x)知f(x)的图象关于直线x=1对称,又函数y=|x2-2x-3|=|(x-1)2-4|的图象也关于直线x=1对称,所以这两个函数的图象的交点也关于直线x=1对称.不妨设x1<x2<…<xm,则=1,即x1+xm=2,同理有x2+xm-1=2,x3+xm-2=2,…,又xi=xm+xm-1+…+x1,所以2xi=(x1+xm)+(x2+xm-1)+…+(xm+x1)=2m,所以xi=m.法二:(光速解法)取特殊函数f(x)=0(x∈R),它与y=|x2-2x-3|的图象有两个交点(-1,0),(3,0),此时m=2,x1=-1,x2=3,故x i=2=m,只有B选项符合.4.解析:选A.因为a=2=4>3=b,c=25=5>4=a,所以b<a<c,故选A.5.解析:选D.当x>0时,x+>,所以f=f,即f(x+1)=f(x),所以f(6)=f(5)=f(4)=…=f(1)=-f(-1)=2.6.解析:选D.易知y=2x2-e|x|是偶函数,设f(x)=2x2-e|x|,则f(2)=2×22-e2=8-e2,所以0<f(2)<1,所以排除A,B;当0≤x≤2时,y=2x2-ex,所以y′=4x-ex,又(y′)′=4-ex,当0<x<ln 4时,(y′)′>0,当ln 4<x<2时,(y′)′<0,所以y′=4x-ex在(0,ln 4)单调递增,在(ln 4,2)单调递减,所以y′=4x-ex在[0,2]有-1≤y′≤4(ln 4-1),所以y′=4x-ex在[0,2]存在零点ε,所以函数y=2x2-ex在[0,ε)单调递减,在(ε,2]单调递增,排除C,故选D.7.解析:选D.由于函数y=sin x2是一个偶函数,选项A、C的图象都关于原点对称,所以不正确;选项B与选项D的图象都关于y轴对称,在选项B中,当x=±时,函数y=sin x2<1,显然不正确,当x=± 时,y=sin x2=1,而 <,故选D.8.解析:选B.设经过x年后该公司全年投入的研发资金开始超过200万元,则130(1+12%)x>200,即1.12x>⇒x>=≈=3.8,所以该公司全年投入的研发资金开始超过200万元的年份是2019年.9.解析:法一:(通性通法之分离常数法)f(x)===1+,∵x≥2,∴x-1≥1,0<≤1,∴1+∈(1,2],故当x=2时,函数f(x)=取得最大值2.法二:(光速解法之反解法)令y=,∴xy-y=x,∴x=.∵x≥2,∴≥2,∴-2=≥0,解得1<y≤2,故函数f(x)的最大值为2.法三:(光速解法之导数法)∵f(x)=,∴f′(x)==<0,∴函数f(x)在[2,+∞)上单调递减,故当x=2时,函数f(x)=取得最大值2.答案:2专题3 导数及其应用1.解析:选D.函数y=,y=ln(x+1)在(-1,1)上都是增函数,函数y=cos x在(-1,0)上是增函数,在(0,1)上是减函数,而函数y=2-x=()x在(-1,1)上是减函数,故选D.2.解析:当x>0时,-x<0,则f(-x)=ex-1+x.又f(x)为偶函数,所以f(x)=f(-x)=+x,所以当x>0时,f′(x)=ex-1+1,则曲线y=f(x)在点(1,2)处的切线的斜率为f′(1)=2,所以切线方程为y-2=2(x-1),即y=2x.答案:y=2x3.解析:由题意得f′(x)=(2x+3)ex,则得f′(0)=3.答案:34.解:(1)f′(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a).(i)设a≥0,则当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0,所以f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.(ii)设a<0,由f′(x)=0得x=1或x=ln(-2a).①若a=-,则f′(x)=(x-1)(ex-e),所以f(x)在(-∞,+∞)单调递增.②若a>-,则ln(-2a)<1,故当x∈(-∞,ln(-2a))∪(1,+∞)时,f′(x)>0;当x∈(ln(-2a),1)时,f′(x)<0,所以f(x)在(-∞,ln(-2a)),(1,+∞)单调递增,在(ln(-2a),1)单调递减.③若a<-,则ln(-2a)>1,故当x∈(-∞,1)∪(ln(-2a),+∞)时,f′(x)>0;当x∈(1,ln(-2a))时,f′(x)<0,所以f(x)在(-∞,1),(ln(-2a),+∞)单调递增,在(1,ln(-2a))单调递减.(2)(i)设a>0,则由(1)知,f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.又f(1)=-e,f(2)=a,取b满足b<0且b<ln ,则f(b)>(b-2)+a(b-1)2=a(b2-b)>0.所以f(x)有两个零点.(ii)设a=0,则f(x)=(x-2)ex,所以f(x)只有一个零点.(iii)设a<0,若a≥-,则由(1)知,f(x)在(1,+∞)单调递增,又当x≤1时,f(x)<0,故f(x)不存在两个零点;若a<-,则由(1)知,f(x)在(1,ln (-2a))单调递减,在(ln(-2a),+∞)单调递增,又当x≤1时,f(x)<0,故f(x)不存在两个零点.综上,a的取值范围为(0,+∞).5.解:(1)f(x)的定义域为(0,+∞).当a=4时,f(x)=(x+1)ln x-4(x-1),f′(x)=ln x+-3,f′(1)=-2,f(1)=0.曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.(2)当x∈(1,+∞)时,f(x)>0等价于ln x->0.设g(x)=ln x-,则g′(x)=-=,g(1)=0.(ⅰ)当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上单调递增,因此g(x)>0;(ⅱ)当a>2时,令g′(x)=0得x1=a-1-,x2=a-1+.由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)上单调递减,此时g(x)<g(1)=0.综上,a的取值范围是(-∞,2].6.解:(1)由题设,f(x)的定义域为(0,+∞),f′(x)=-1,令f′(x)=0解得x=1.当0<x<1时,f′(x)>0,f(x)单调递增;当x>1时,f′(x)<0,f(x)单调递减.(2)证明:由(1)知f(x)在x=1处取得最大值,最大值为f(1)=0.所以当x≠1时,ln x<x-1.故当x∈(1,+∞)时,ln x<x-1,ln <-1,即1<<x.(3)证明:由题设c>1,设g(x)=1+(c-1)x-cx,则g′(x)=c-1-cxln c,令g′(x)=0,解得x0=.当x<x0时,g′(x)>0,g(x)单调递增;当x>x0时,g′(x)<0,g(x)单调递减.由(2)知1<<c,故0<x0<1.又g(0)=g(1)=0,故当0<x<1时,g(x)>0.所以当x∈(0,1)时,1+(c-1)x>cx.7.解:(1)由f′(x)=ln x-2ax+2a,可得g(x)=ln x-2ax+2a,x∈(0,+∞).则g′(x)=-2a=.当a≤0,x∈(0,+∞)时,g′(x)>0,函数g(x)单调递增;当a>0,x∈时,g′(x)>0,函数g(x)单调递增,x∈时,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)的单调增区间为,单调减区间为.(2)由(1)知,f′(1)=0.①当a≤0时,f′(x)单调递增,所以当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.②当0<a<时,>1,由(1)知f′(x)在内单调递增,可得当x∈(0,1)时,f′(x)<0,x∈时,f′(x)>0.所以f(x)在(0,1)内单调递减,在内单调递增,所以f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f′(x)在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x∈(0,+∞)时,f′(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当x∈时,f′(x)>0,f(x)单调递增,当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)在x=1处取得极大值,合题意.综上可知,实数a的取值范围为a>.专题4 三角函数与解三角形1.解析:选D.由余弦定理,得4+b2-2×2bcos A=5,整理得3b2-8b-3=0,解得b=3或b=-(舍去),故选D.2.解析:选D.函数y=2sin的周期为π,所以将函数y=2sin的图象向右平移个单位长度后,得到函数图象对应的解析式为y=2sin =2sin.故选D.3.解析:选A.由题图易知A=2,因为周期T满足=-,所以T=π,ω==2.由x=时,y=2可知2×+φ=+2kπ(k∈Z),所以φ=-+2kπ(k∈Z),结合选项可知函数解析式为y=2sin.4.解析:选B.f(x)=1-2sin2x+6sin x=-2+,因为sin x∈[-1,1],所以当sin x=1时,f(x)取得最大值,且f(x)max=5.5.解析:选D.法一:(通性通法)由tan θ=-,得sin θ=-,cos θ=或sin θ=,cos θ=-,所以cos 2θ=cos2θ-sin2θ=,故选D.法二:(光速解法)cos 2θ====.6.解析:选D.设BC边上的高为AD,则BC=3AD,DC=2AD,所以AC==AD.由正弦定理,知=,即=,解得sin A=,故选D.7.解析:选C.由余弦定理得a2=b2+c2-2bccos A=2b2-2b2cos A,所以2b2(1-sin A)=2b2(1-cos A),所以sin A=cos A,即tan A=1,又0<A<π,所以A=.8.解析:选A.函数y=sin x的图象向左平行移动个单位长度可得到y=sin的图象.9.解析:法一:(通性通法)因为sin =,所以cos=sin=sin=,因为θ为第四象限角,所以-+2kπ<θ<2kπ,k∈Z,所以-+2kπ<θ-<2kπ-,k∈Z,所以sin=-=-,所以tan==-.法二:(光速解法)因为θ是第四象限角,且sin=,所以θ+为第一象限角,所以cos=,所以tan===-=-.答案:-10.解析:由条件可得sin A=,sin C=,从而有sin B=sin [π-(A+C)]=sin(A+C)=sin Acos C+cos Asin C=.由正弦定理=,可知b==.答案:11.解析:因为y=sin x-cos x=2sin,所以函数y=sin x-cos x的图象可由函数y=2sin x的图象至少向右平移个单位长度得到.答案:12.解析:2cos2x+sin 2x=cos 2x+sin 2x+1=sin+1,故A=,b=1.答案: 113.解:(1)因为f(x)=2sin ωxcos ωx+cos 2ωx=sin 2ωx+cos 2ωx=sin(2ωx+),所以f(x)的最小正周期T==.依题意,=π,解得ω=1.(2)由(1)知f(x)=sin(2x+).函数y=sin x的单调递增区间为[2kπ-,2kπ+](k∈Z).由2kπ-≤2x+≤2kπ+(k∈Z),得kπ-≤x≤kπ+(k∈Z).所以f(x)的单调递增区间为[kπ-,kπ+](k∈Z).14.解:(1)在△ABC中,由=,可得asin B=bsin A,又由asin 2B=bsin A,得2asin Bcos B=bsin A=asin B,所以cos B=,得B=.(2)由cos A=,可得sin A=,则sin C=sin[π-(A+B)]=sin(A+B)=sin(A+)=sin A+cos A=.15.解:(1)因为cos B=,0<B<π,所以sin B===.由正弦定理知=,所以AB===5.(2)在△ABC中,A+B+C=π,所以A=π-(B+C),于是cos A=-cos(B+C)=-cos=-cos Bcos +sin Bsin,又cos B=,sin B=,故cos A=-×+×=-.因为0<A<π,所以sin A==.因此,cos=cos Acos +sin Asin =-×+×=.专题5 平面向量、数系的扩充与复数的引入1.解析:选C.易知z=3-2i,所以=3+2i.2.解析:选D.==-i,故选D.3.解析:选A.===i.4.解析:选B.易知z=1+i,所以z=1-i.故选B.5.解析:选A.由题意得cos ∠ABC===,所以∠ABC=30°,故选A.6.解析:选B.法一:(通性通法)如图,建立平面直角坐标系,则A(0,),B(-,0),C(,0),E(0,0),D(-,),由=2,得F(,-),则=(,-),=(1,0),所以·=.法二:(光速解法)·=(+)·=(+)·=·+·=-+=.7.解析:因为a=(x,x+1),b=(1,2),a⊥b,所以x+2(x+1)=0,解得x=-.答案:-8.解析:由题意得,-2m-12=0,所以m=-6.答案:-69.解析:a·b=2,∴cos〈a,b〉===,又〈a,b〉∈[0,π],∴〈a,b〉=.答案:10.解析:因为z==1-i,所以z的实部是1.答案:111.解析:由a·b=1,|a|=1,|b|=2可得两向量的夹角为60°,建立平面直角坐标系,可设a=(1,0),b=(1,),e=(cos θ,sin θ),则|a·e|+|b·e|=|cos θ|+|cos θ+sin θ|≤|cos θ|+|cos θ|+|sin θ|=|sin θ|+2|cos θ|≤,所以|a·e|+|b·e|的最大值为.答案:专题6 数 列1.解:(1)由已知,a1b2+b2=b1,b1=1,b2=,得a1=2.所以数列{an}是首项为2,公差为3的等差数列,通项公式为an=3n-1.(2)由(1)和anbn+1+bn+1=nbn,得bn+1=,因此数列{bn}是首项为1,公比为的等比数列.记{bn}的前n项和为Sn,则Sn==-.2.解:(1)设数列{an}的公差为d,由题意有2a1+5d=4,a1+5d=3.解得a1=1,d=.所以{an}的通项公式为an=.(2)由(1)知,bn=[].当n=1,2,3时,1≤<2,bn=1;当n=4,5时,2<<3,bn=2;当n=6,7,8时,3≤<4,bn=3;当n=9,10时,4<<5,bn=4.所以数列{bn}的前10项和为1×3+2×2+3×3+4×2=24.3.解:(1)由题意可得a2=,a3=.(2)由a-(2an+1-1)an-2an+1=0得2an+1(an+1)=an(an+1).因为{an}的各项都为正数,所以=.故{an}是首项为1,公比为的等比数列,因此an=.4.解:(1)等比数列{bn}的公比q===3,所以b1==1,b4=b3q=27.设等差数列{an}的公差为d.因为a1=b1=1,a14=b4=27,所以1+13d=27,即d=2.所以an=2n-1(n=1,2,3,…).(2)由(1)知,an=2n-1,bn=3n-1.因此cn=an+bn=2n-1+3n-1.从而数列{cn}的前n项和Sn=1+3+…+(2n-1)+1+3+…+3n-1=+=n2+.5.解:(1)设数列{an}的公比为q.由已知,有-=,解得q=2,或q=-1.又由S6=a1·=63,知q≠-1,所以a1·=63,得a1=1.所以an=2n-1.(2)由题意,得bn=(log2an+log2an+1)=(log22n-1+log22n)=n-,即{bn}是首项为,公差为1的等差数列.设数列{(-1)nb}的前n项和为Tn,则T2n=(-b+b)+(-b+b)+…+(-b+b)=b1+b2+b3+b4+…+b2n-1+b2n==2n2.6.解:(1)由题意得则又当n≥2时,由an+1-an=(2Sn+1)-(2Sn-1+1)=2an,得an+1=3an.所以,数列{an}的通项公式为an=3n-1,n∈N*.(2)设bn=|3n-1-n-2|,n∈N*,b1=2,b2=1.当n≥3时,由于3n-1>n+2,故bn=3n-1-n-2,n≥3.设数列{bn}的前n项和为Tn,则T1=2,T2=3.当n≥3时,Tn=3+-=,所以Tn=专题7 不等式、推理与证明1.解析:选B.不等式组表示的平面区域如图中阴影部分所示,其中A(1,2)、B(2,1),当两条平行直线间的距离最小时,两平行直线分别过点A与B,又两平行直线的斜率为1,直线AB的斜率为-1,所以线段AB的长度就是过A、B两点的平行直线间的距离,易得|AB|=,即两条平行直线间的距离的最小值是,故选B.2.解析:选C.不等式组表示的平面区域如图中阴影部分所示,其中A(0,-3),B(3,-1),C(0,2),显然在点B处x2+y2取得最大值10.3.解析:设某高科技企业生产产品A和产品B分别为x件,y件,生产产品A、产品B的利润之和为z元,依题意得即目标函数为z=2 100x+900y.其可行域为四边形OMNC及其内部区域中的整点,其中点O(0,0),M(0,200),N(60,100),C(90,0),当直线z=2 100x+900y经过点N(60,100)时,z取得最大值,zmax=2 100×60+900×100=216 000,即生产产品A、产品B的利润之和的最大值为216 000元.答案:216 0004.解析:法一:(通性通法)作出可行域,如图中阴影部分所示,由z=x-2y得y=x-z,作直线y=x并平移,观察可知,当直线经过点A(3,4)时,zmin=3-2×4=-5.法二:(光速解法)因为可行域为封闭区域,所以线性目标函数的最值只可能在边界点处取得,易求得边界点分别为(3,4),(1,2),(3,0),依次代入目标函数可求得zmin=-5.答案:-55.解析:由丙所言可能有两种情况.一种是丙持有“1和2”,结合乙所言可知乙持有“2和3”,从而甲持有“1和3”,符合甲所言情况;另一种是丙持有“1和3”,结合乙所言可知乙持有“2和3”,从而甲持有“1和2”,不符合甲所言情况.故甲持有“1和3”.答案:1和36.解析:作出不等式组表示的平面区域,如图中阴影部分所示,由图知当z=2x+3y-5经过点A(-1,-1)时,z取得最小值,zmin=2×(-1)+3×(-1)-5=-10.答案:-10专题8 立体几何1.解析:选A.由正方体的体积为8可知,正方体的棱长a=2.又正方体的体对角线是其外接球的一条直径,即2R=a(R为正方体外接球的半径),所以R=,故所求球的表面积S=4πR2=12π.2.解析:选A.由三视图可知该几何体是半径为R的球截去所得,其图象如图所示,所以×πR3=,解得R=2,所以该几何体的表面积S=×4πR2+3×πR2=17π.故选A. 3.解析:选C.该几何体的表面积由圆锥的侧面积、圆柱的侧面积和圆柱的一个底面圆的面积组成.其中,圆锥的底面半径为2,母线长为=4,圆柱的底面半径为2,高为4,故所求表面积S=π×2×4+2π×2×4+π×22=28π.4.解析:选B.由三视图,知该几何体是一个斜四棱柱,所以该几何体的表面积S=2×3×6+2×3×3+2×3×3=54+18,故选B.5.解析:选B.由正视图、俯视图得原几何体的形状如图所示,则该几何体的侧视图为B.6.解析:选C.选项A,只有当m∥β或m⊂β时,m∥l;选项B,只有当m⊥β时,m∥n;选项C,由于l⊂β,∴n⊥l;选项D,只有当m∥β或m⊂β时,m⊥n.故选C.7.解析:选A.如图,过点A补作一个与正方体ABCDA1B1C1D1相同棱长的正方体,易知平面α为平面AF1E,则m,n所成角为∠EAF1,因为△EAF1为正三角形,所以sin∠EAF1=sin 60°=,故选A.8.解析:选B.要使球的体积V最大,必须球的半径R最大.由题意,知当球与直三棱柱的上、下底面都相切时,球的半径取得最大值,为,此时球的体积为πR3=π×=,故选B.9.解:(1)证明:因为P在平面ABC内的正投影为D,所以AB⊥PD.因为D在平面PAB内的正投影为E,所以AB⊥DE.所以AB⊥平面PED,故AB⊥PG.又由已知,可得PA=PB,所以G是AB的中点.(2)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.理由如下:由已知可得PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连接CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=××2×2×2=.10.解:(1)证明:由已知得AC⊥BD,AD=CD.又由AE=CF得=,故AC∥EF.由此得EF⊥HD,EF⊥HD′,所以AC⊥HD′.(2)由EF∥AC得==.由AB=5,AC=6得DO=BO==4.所以OH=1,D′H=DH=3.于是OD′2+OH2=(2)2+12=9=D′H2,故OD′⊥OH.由(1)知,AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面BHD′,于是AC⊥OD′.又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.又由=得EF=.五边形ABCFE的面积S=×6×8-××3=.所以五棱锥D′ABCFE的体积V=××2=.11.解:(1)证明:由已知得AM=AD=2.取BP的中点T,连接AT,TN,由N为PC的中点知TN∥BC,TN=BC=2.又AD∥BC,故TN綊AM,四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)因为PA⊥平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA.取BC的中点E,连接AE,由AB=AC=3得AE⊥BC,AE==.由AM∥BC得M到BC的距离为,故S△BCM=×4×=2.所以四面体NBCM的体积VNBCM=×S△BCM×=.12.解:(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,所以DC⊥平面PAC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.所以AB⊥平面PAC.所以平面PAB⊥平面PAC.(3)棱PB上存在点F,使得PA∥平面CEF.证明如下:如图,取PB中点F,连接EF,CE,CF.又因为E为AB的中点,所以EF∥PA.又因为PA⊄平面CEF,所以PA∥平面CEF.13.解:(1)证明:取BD的中点O,连接OE,OG.在△BCD中,因为G是BC的中点,所以OG∥DC且OG=DC=1,又因为EF∥AB,AB∥DC,所以EF∥OG且EF=OG,即四边形OGFE是平行四边形,所以FG∥OE.又FG⊄平面BED,OE⊂平面BED,所以FG∥平面BED.(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,进而∠ADB=90°,即BD⊥AD.又因为平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,所以BD⊥平面AED.又因为BD⊂平面BED,所以平面BED⊥平面AED.(3)因为EF∥AB,所以直线EF与平面BED所成的角即为直线AB与平面BED所成的角.过点A作AH⊥DE于点H,连接BH.又平面BED∩平面AED=ED,由(2)知,AH⊥平面BED,所以直线AB与平面BED所成的角即为∠ABH.在△ADE中,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,所以sin∠ADE=,因此,AH=AD·sin∠ADE=.在Rt△AHB中,sin∠ABH==.所以,直线EF与平面BED所成角的正弦值为.14.证明:(1)在直三棱柱ABCA1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABCA1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.15.证明:(1)因为EF∥DB,所以EF与DB确定平面BDEF.连接DE.因为AE=EC,D为AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF,因为FB⊂平面BDEF,所以AC⊥FB.(2)设FC的中点为I,连接GI,HI.在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC,又HI∩GI=I,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.16.解:(1)取棱AD的中点M(M∈平面PAD),点M即为所求的一个点.理由如下:因为AD∥BC,BC=AD,所以BC∥AM,且BC=AM,所以四边形AMCB是平行四边形,从而CM∥AB.又AB⊂平面PAB,CM⊄平面PAB,所以CM∥平面PAB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)(2)证明:由已知,PA⊥AB,PA⊥CD,因为AD∥BC,BC=AD,所以直线AB与CD相交.所以PA⊥平面ABCD.从而PA⊥BD.连接BM,因为AD∥BC,BC=AD,所以BC∥MD,且BC=MD.所以四边形BCDM是平行四边形.所以BM=CD=AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面PAB.又BD⊂平面PBD,所以平面PAB⊥平面PBD.专题9 平面解析几何1.解析:选A.由题可知,圆心为(1,4),结合题意得=1,解得a=-.2.解析:选D.由题意得2p=4,p=2,抛物线的焦点坐标为(1,0).3.解析:选B.由题知圆M:x2+(y-a)2=a2,圆心(0,a)到直线x+y=0的距离d=,所以2 =2,解得a=2.圆M,圆N的圆心距|MN|=,两圆半径之差为1,故两圆相交.4.解析:选B.法一:(通性通法)不妨设直线l过椭圆的上顶点(0,b)和左焦点(-c,0),b>0,c>0,则直线l的方程为bx-cy+bc=0,由已知得=×2b,解得b2=3c2,又b2=a2-c2,所以=,即e2=,所以e=(e=-舍去),故选B.法二:(光速解法)不妨设直线l过椭圆的上顶点(0,b)和左焦点(-c,0),b>0,c>0,则直线l的方程为bx-cy+bc=0,由已知得=×2b,所以=×2b,所以e==,故选B.5.解析:选D.易知抛物线的焦点为F(1,0),设P(xP,yP),由PF⊥x轴可得xP=1,代入抛物线方程得yP=2(-2舍去),把P(1,2)代入曲线y=(k>0)得k=2.6.解析:选A.由题意,不妨设点P在x轴上方,直线l的方程为y=k(x+a)(k>0),分别令x=-c与x=0,得|FM|=k(a-c),|OE|=ka,设OE的中点为G,由△OBG∽△FBM,得=,即=,整理得=,所以椭圆C的离心率e=,故选A.7.解析:圆C的方程可化为x2+(y-a)2=a2+2,可得圆心的坐标为C(0,a),半径r=,所以圆心到直线x-y+2a=0的距离为=,所以+()2=()2,解得a2=2,所以圆C的半径为2,所以圆C的面积为4π.答案:4π8.解析:设A(x1,y1),B(x2,y2),C(x3,0),D(x4,0),由x-y+6=0,得x=y-6,代入圆的方程,并整理,得y2-3y+6=0,解得y1=2,y2=,所以x1=0,x2=-3,所以直线AC的方程为y-2=-x,令y=0得x3=2,直线BD的方程为y-=-(x+3),令y=0得x4=-2,则|CD|=|x3-x4|=4.答案:49.解析:由题可得a2=a+2,解得a=-1或a=2.当a=-1时,方程为x2+y2+4x+8y-5=0,表示圆,故圆心为(-2,-4),半径为5.当a=2时,方程不表示圆.答案:(-2,-4) 510.解:(1)设M(x1,y1),则由题意知y1>0.由已知及椭圆的对称性知,直线AM的倾斜角为.又A(-2,0),因此直线AM的方程为y=x+2.将x=y-2代入+=1得7y2-12y=0.解得y=0或y=,所以y1=.因此△AMN的面积S△AMN=2×××=.(2)证明:将直线AM的方程y=k(x+2)(k>0)代入+=1得(3+4k2)x2+16k2x+16k2-12=0.由x1·(-2)=得x1=,故|AM|=|x1+2|=.由题设,直线AN的方程为y=-(x+2),故同理可得|AN|=.由2|AM|=|AN|得=,即4k3-6k2+3k-8=0.设f(t)=4t3-6t2+3t-8,则k是f(t)的零点.f′(t)=12t2-12t+3=3(2t-1)2≥0,所以f(t)在(0,+∞)单调递增.又f()=15-26<0,f(2)=6>0,因此f(t)在(0,+∞)有唯一的零点,且零点k在(,2)内.所以<k<2.11.解:(1)由已知得M(0,t),P.又N为M关于点P的对称点,故N,ON的方程为y=x,代入y2=2px,整理得px2-2t2x=0,解得x1=0,x2=.因此H.所以N为OH的中点,即=2.(2)直线MH与C除H以外没有其他公共点.理由如下:直线MH的方程为y-t=x,即x=(y-t).代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,所以除H以外直线MH与C没有其他公共点.12.解:由题设F.设l1:y=a,l2:y=b,则ab≠0,且A,B,P,Q,R.记过A,B两点的直线为l,则l的方程为2x-(a+b)y+ab=0.(1)证明:由于F在线段AB上,故1+ab=0.设AR的斜率为k1,FQ的斜率为k2,则k1=====-b=k2.所以AR∥FQ.(2)设l与x轴的交点为D(x1,0),则S△ABF=|b-a|·|FD|=|b-a||x1-|,S△PQF=.由题设可得2×|b-a||x1-|=,所以x1=0(舍去),x1=1.设满足条件的AB的中点为E(x,y).当AB与x轴不垂直时,由kAB=kDE可得=(x≠1).而=y,所以y2=x-1(x≠1).当AB与x轴垂直时,E与D重合.所以所求轨迹方程为y2=x-1.13.解:(1)由题意得,a=2,b=1.所以椭圆C的方程为+y2=1.又c==,所以离心率e==.(2)设P(x0,y0)(x0<0,y0<0),则x+4y=4.又A(2,0),B(0,1),所以,直线PA的方程为y=(x-2).令x=0,得yM=-,从而|BM|=1-yM=1+.直线PB的方程为y=x+1.令y=0,得xN=-,从而|AN|=2-xN=2+.所以四边形ABNM的面积S=|AN|·|BM|=(2+)(1+)===2.从而四边形ABNM的面积为定值.专题10 概 率1.解析:选C.从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,共有6种选法.红色和紫色的花不在同一花坛的有4种选法,根据古典概型的概率计算公式,所求的概率为=.故选C.2.解析:选B.记“至少需要等待15秒才出现绿灯”为事件A,则P(A)==.3.解析:选C.开机密码的所有可能结果有:(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5),共15种,所以小敏输入一次密码能够成功开机的概率是,故选C.4.解析:选B.设5名学生分别为甲、乙、丙、丁、戊,从甲、乙、丙、丁、戊5人中选2人,有(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共10种情况,其中甲被选中的情况有(甲,乙),(甲,丙),(甲,丁),(甲,戊),共4种,所以甲被选中的概率为=.5.解析:选A.由题意得,甲不输的概率为+=.6.解:(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.(3)由所给数据得保费0.85aa1.25a1.5a1.75a2a频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.专题11 统计、统计案例及算法初步1.解析:选C.输入x=0,y=1,n=1,得x=0,y=1,x2+y2=1<36,不满足条件,执行循环:n=2,x=,y=2,x2+y2=+4<36,不满足条件,执行循环:n=3,x=+1=,y=6,x2+y2=+36>36,满足条件,结束循环,所以输出的x=,y=6,满足y=4x,故选C.2.解析:选C.法一:(通性通法)第一步,a=2,s=0×2+2=2,k=1;第二步,a=2,s=2×2+2=6,k=2;第三步,a=5,s=6×2+5=17,k=3>2,跳出循环.故输出的s=17.法二:(光速解法)由秦九韶算法的意义可知s=f(x)=[(0×x+2)x+2]x+5=2x2+2x+5,故输出的s=f(2)=17.3.解析:选B.第一次循环,得a=2,b=4,a=6,s=6,n=1;第二次循环,得a=-2,b=6,a=4,s=10,n=2;第三次循环,得a=2,b=4,a=6,s=16,n=3;第四次循环,得a=-2,b=6,a=4,s=20,n=4,此时s=20>16,退出循环,输出的n=4,故选B.4.解析:选D.由图可知0 ℃在虚线框内,所以各月的平均最低气温都在0 ℃以上,A正确;由图可知七月的平均温差比一月的平均温差大,B正确;由图可知三月和十一月的平均最高气温都约为10 ℃,基本相同,C正确;由图可知平均最高气温高于20 ℃的月份不是5个,D不正确.故选D.5.解:(1)当x≤19时,y=3 800;当x>19时,y=3 800+500(x-19)=500x-5 700.所以y与x的函数解析式为y=(x∈N).(2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为×(3 800×70+4 300×20+4 800×10)=4 000.若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为×(4 000×90+4 500×10)=4 050.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.6.解:(1)由折线图中数据和附注中参考数据得=4,(ti-)2=28,=0.55,(ti-)(yi-)=tiyi-y=40.17-4×9.32=2.89,r=≈0.99.因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当高,从而可以用线性回归模型拟合y与t的关系.(2)由y=≈1.331及(1)得==≈0.103,=y-t≈1.331-0.103×4≈0.92.所以,y关于t的回归方程为=0.92+0.10t.将2016年对应的t=9代入回归方程得=0.92+0.10×9=1.82.所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨.专题12 选考部分选修4-1 几何证明选讲1.证明:(1)设E是AB的中点,连接OE.因为OA=OB,∠AOB=120°,所以OE⊥AB,∠AOE=60°.在Rt△AOE中,OE=AO,即O到直线AB的距离等于⊙O半径,所以直线AB与⊙O相切.(2)连接OD,因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设O′是A,B,C,D四点所在圆的圆心,作直线OO′.由已知得O在线段AB的垂直平分线上,又O′在线段AB的垂直平分线上,所以OO′⊥AB.同理可证,OO′⊥CD.所以AB∥CD.2.解:(1)证明:因为DF⊥CE,所以△DEF∽△CDF,则有∠GDF=∠DEF=∠FCB,==,所以△DGF∽△CBF,由此可得∠DGF=∠CBF,因此∠CGF+∠CBF=180°,所以B,C,G,F四点共圆.(2)由B,C,G,F四点共圆,CG⊥CB知FG⊥FB.连接GB.由G为Rt△DFC斜边CD的中点,知GF=GC,故Rt△BCG≌Rt△BFG,因此,四边形BCGF的面积S是△GCB面积S△GCB的2倍,即S=2S△GCB=2×××1=.3.解:(1)连接PB,BC,则∠BFD=∠PBA+∠BPD,∠PCD=∠PCB+∠BCD.因为=,所以∠PBA=∠PCB,又∠BPD=∠BCD,所以∠BFD=∠PCD.又∠PFB+∠BFD=180°,∠PFB=2∠PCD,所以3∠PCD=180°,因此,∠PCD=60°.(2)证明:因为∠PCD=∠BFD,所以∠EFD+∠PCD=180°,由此知C,D,F,E四点共圆,其圆心既在CE的垂直平分线上,又在DF的垂直平分线上,故G就是过C,D,F,E四点的圆的圆心,所以G在CD的垂直平分线上.又O也在CD的垂直平分线上,因此OG⊥CD.选修4-4 坐标系与参数方程1.解:(1)消去参数t得到C1的普通方程x2+(y-1)2=a2.C1是以(0,1)为圆心,a为半径的圆.将x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsin θ+1-a2=0.(2)曲线C1,C2的公共点的极坐标满足方程组若ρ≠0,由方程组得16cos2θ-8sin θcos θ+1-a2=0,由已知tan θ=2,可得16cos2θ-8sin θcos θ=0,从而1-a2=0,解得a=-1(舍去),a=1.a=1时,极点也为C1,C2的公共点,在C3上.所以a=1.2.解:(1)由x=ρcos θ,y=ρsin θ可得圆C的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB|=|ρ1-ρ2|== .由|AB|=得cos2α=,tan α=±.所以l的斜率为或-.3.解:(1)C1的普通方程为+y2=1.C2的直角坐标方程为x+y-4=0.(2)由题意,可设点P的直角坐标为(cos α,sin α).因为C2是直线,所以|PQ|的最小值即为P到C2的距离d(α)的最小值,d(α)==.当且仅当α=2kπ+(k∈Z)时,d(α)取得最小值,最小值为,此时P的直角坐标为.选修4-5 不等式选讲1.解:(1)f(x)=当x≤-时,由f(x)<2得-2x<2,解得x>-1,所以-1<x≤-;当-<x<时,f(x)<2恒成立;当x≥时,由f(x)<2得2x<2,解得x<1,所以≤x<1.所以f(x)<2的解集M={x|-1<x<1}.(2)证明:由(1)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0.因此|a+b|<|1+ab|.2.解:(1)当a=2时,f(x)=|2x-2|+2.解不等式|2x-2|+2≤6得-1≤x≤3.因此f(x)≤6的解集为{x|-1≤x≤3}.(2)当x∈R时,f(x)+g(x)=|2x-a|+a+|2x-1|≥|2x-a+1-2x|+a=|1-a|+a,当x=时等号成立,所以当x∈R时,f(x)+g(x)≥3等价于|1-a|+a≥3.①当a≤1时,①等价于1-a+a≥3,无解.当a>1时,①等价于a-1+a≥3,解得a≥2.所以a的取值范围是[2,+∞).3.解:(1)f(x)=y=f(x)的图象如图所示.(2)由f(x)的表达式及图象,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=或x=5,故f(x)>1的解集为{x|1<x<3};f(x)<-1的解集为.所以|f(x)|>1的解集为.
相关试卷
这是一份2022年全国甲卷数学文科高考真题,共5页。
这是一份2013-2022十年高考真题分类汇编理数文数试卷
这是一份2013-2022十年高考真题分类汇编理数文数各22份