![人教版九年级数学上册《随机事件与概率》教案第1页](http://img-preview.51jiaoxi.com/2/3/12097654/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版九年级数学上册《随机事件与概率》教案第2页](http://img-preview.51jiaoxi.com/2/3/12097654/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版九年级数学上册《随机事件与概率》教案第3页](http://img-preview.51jiaoxi.com/2/3/12097654/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学人教版九年级上册25.1.1 随机事件教学设计及反思
展开
这是一份初中数学人教版九年级上册25.1.1 随机事件教学设计及反思,共8页。教案主要包含了教学目标,重点与难点,学法与教学用具,教学设想等内容,欢迎下载使用。
第一课时 随机事件的概率 一、教学目标:1、知识与技能:(1)通过实例了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系.2、过程与方法:(1)发现法教学,通过在抛硬币试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”、“掷骰子”、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:概率的概念的理解,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系.三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,投灯片,计算机及多媒体教学.四、教学设想:1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。请观看下面事件,它们发生的情况如何?(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;(4)“若为实数,则”;(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(8)“某电话机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”;(10)“在常温下,焊锡熔化”.根据引例导出概念:2、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;请同学们根据概念判断引列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?答:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件.组织学生利用带来的硬币做试验导入频数与频率的概念:活动:1:全班每人各取一枚硬币,做10次掷硬币的试验,每人记录下试验的结果,填入下表中:姓名试验次数正面朝上的次数反面朝上的次数 思考:与其它同学的试验结果比较,你的结果和他们一致吗?为什么会出现这样的情况?2:每组把本组同学的试验结果统计一下,填入下表中组次试验总次数正面朝上的总次数反面朝上的总次数 思考:与其它小组的试验结果比较,各组结果一致吗?为什么会出现这样的情况?3:请一位同学把本班同学的试验结果统计一下,填入下表中:班级试验总次数正面朝上的总次数反面朝上的总次数 4:请把全班每个同学的试验中正面朝上的次数收集起来,并用条形图表示5:请同学们找出掷硬币时“正面朝上”这个事件发生的规律性。(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率本章中我们研究的是那些在相同条件下可以进行大量重复试验的随机事件,它们都具有频率稳定性,任何事件的概率是0~1之间的一个确定的数,它度量该事件发生的可能性。3、例题分析:例2 某射手在同一条件下进行射击,结果如下表所示:射击次数n102050100200500击中靶心次数m8194492178455击中靶心的频率 (1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?分析:事件A出现的频数nA与试验次数n的比值即为事件A的频率,当事件A发生的频率fn(A)稳定在某个常数上时,这个常数即为事件A的概率。解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.(2)由于频率稳定在常数0.89,所以这个射手击一次,击中靶心的概率约是0.89。小结:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之。练习:一个地区从某年起几年之内的新生儿数及其中男婴数如下:时间范围1年内2年内3年内4年内新生婴儿数554496071352017190男婴数2883497069948892男婴出生的频率 (1)填写表中男婴出生的频率(结果保留到小数点后第3位);(2)这一地区男婴出生的概率约是多少?答案:(1)表中依次填入的数据为:0.520,0.517,0.517,0.517.(2)由表中的已知数据及公式fn(A)=即可求出相应的频率,而各个频率均稳定在常数0.518上,所以这一地区男婴出生的概率约是0.518.例3 某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?分析:中靶的频数为9,试验次数为10,所以靶的频率为=0.9,所以中靶的概率约为0.9.解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.2.4、课堂小结:正确理解概率的概念,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系. 5、自我评价与课堂练习:1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( )A.必然事件 B.随机事件 C.不可能事件 D.无法确定2.下列说法正确的是( )A.任一事件的概率总在(0.1)内 B.不可能事件的概率不一定为0C.必然事件的概率一定为1 D.以上均不对3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。每批粒数251070130700150020003000发芽的粒数2496011628263913392715发芽的频率 (1)完成上面表格:(2)该油菜子发芽的概率约是多少?4.某篮球运动员,在同一条件下进行投篮练习,结果如下表如示。投篮次数 进球次数m 进球频率 (1)计算表中进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?6、评价标准:1.B2.C内,不可能事件的概率为0,必然事件的概率为1.]3.解:(1)填入表中的数据依次为1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905.(2)该油菜子发芽的概率约为0.897。4.解:(1)填入表中的数据依次为0.75,0.8,0.8,0.85,0.83,0.8,0.76.(2)由于上述频率接近0.80,因此,进球的概率约为0.80。7、作业:作业:P128 习题3.1 A组 4, B组 38、教学反思: A组一选择题1.下列试验能够构成事件的是( )A.掷一次硬币 B.射击一次 C.标准大气压下,水烧至100℃ D.摸彩票中头奖2. 在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是( )A.必然事件 B.不可能事件C.随机事件 D.以上选项均不正确3. 随机事件A的频率满足( )A. =0 B. =1 C.0<<1 D.0≤≤14. 下面事件是必然事件的有( )①如果a、b∈R,那么a·b=b·a ②某人买彩票中奖 ③3+5>10A.① B.② C.③ D.①②5. 下面事件是随机事件的有( )①连续两次掷一枚硬币,两次都出现正面朝上 ②异性电荷,相互吸引 ③在标准大气压下,水在1℃时结冰 A.② B.③ C.① D.②③二 填空题6. 某小组有三名女生,两名男生,现从这个小组中任意选出一名组长,
则其中一名女生小丽当选为组长的概率是___________7.把编号为1到6的六个小球,平均分到三个不同的盒子内,则:(1)每盒各有一个奇数号球的概率 (2)有一盒全是偶数号球的概率 三 解答题 8.学生甲在求事件A的概率时,算得事件A的概率P(A)=1.2,学生乙看了后说“你一定算错了。”试问乙的依据是什么? 9. 某篮球运动员在同一条件下进行投篮练习,结果如下表所示:投篮次数n8101520304050进球次数m681217253238进球频率 (1)计算表中进球的频率;(2)这位运动员投篮一次,进球的概率约是多少? B组一 选择题1、一箱内有十张标有0到9的卡片,从中任选一张,则取到卡片上的数字不小于6的概率是( ) A. B. C. D. 2.掷一枚骰子,则掷得奇数点的概率是( )A. B. C. D. 3. 抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是( )A. B. C. D. 4.从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为( )A. B. C. D.5.从一批羽毛球产品中任取一个,其质量小于4.8g的概率为0.3,质量小于4.85g的概率为0.32,那么质量在(g )范围内的概率是( )A. 0.62 B. 0.38 C. 0.02 D. 0.68二 填空题6. 某个地区从某年起几年内的新生婴儿数及其中男婴数如下表(结果保留两位有效数字):时间范围1年内2年内3年内4年内新生婴儿数554490131352017191男婴数2716489968128590男婴出生频率 (1)填写表中的男婴出生频率;(2)这一地区男婴出生的概率约是_______.7.我国西部一个地区的年降水量在下列区间内的概率如下表所示: 年降水量/mm[100,150)[150,200)[200,250)[250,300]概率0.210.160.130.12则年降水量在[200,300](mm)范围内的概率是___________.三 解答题8. 某水产试验厂实行某种鱼的人工孵化,10000个鱼卵能孵出8513尾鱼苗,根据概率的统计定义解答下列问题:(1)求这种鱼卵的孵化概率(孵化率);(2)30000个鱼卵大约能孵化多少尾鱼苗?(3)要孵化5000尾鱼苗,大概得备多少鱼卵?(精确到百位) 9. 为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.
参考答案A组一 选择题1.D 2. C 3. D 4.A 5. C 二 填空题 6. 7. (1) (2). 三 解答题8. 随机事件A的频率满足0≤≤1.9. 解:(1)进球的频率从左向右依次为0.75,0.8,0.8,0.85,0.83,0.8,0.76.(2)这位运动员投篮一次,进球的概率约是0.8.B组一 选择题1.C 2.B 3. D 4.B 5. C 二 填空题6.(1)0.49 0.54 0.50 0.50 (2)0.50 0.2 7. 0.25三 解答题8. 解:(1)这种鱼卵的孵化频率为=0.8513,它近似的为孵化的概率.(2)设能孵化x个,则,∴x=25539,即30000个鱼卵大约能孵化25539尾鱼苗.(3)设需备y个鱼卵,则,∴y≈5873,即大概得准备5873个鱼卵.9. 解:设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕的频率(代替概率)为,由≈,得n≈25000.
相关教案
这是一份初中25.1.2 概率精品教学设计,共6页。教案主要包含了温故知新,探究新知,新知应用等内容,欢迎下载使用。
这是一份初中数学25.1.1 随机事件获奖教案设计,共6页。教案主要包含了新课导入,探究新知,新知应用等内容,欢迎下载使用。
这是一份数学九年级上册25.1.1 随机事件获奖第2课时教学设计及反思,共4页。教案主要包含了【教材分析】,【教学流程】,【板书设计】,【教后反思】等内容,欢迎下载使用。