2020年上海市长宁区中考二模数学试卷(期中)
展开
这是一份2020年上海市长宁区中考二模数学试卷(期中),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(共6小题;共30分)
1. 下列实数中,无理数是
A. 0B. 3C. −3D. 9
2. 下列单项式中,与 xy2 是同类项的是
A. x2yB. x2y2C. 2xy2D. 3xy
3. 关于反比例函数 y=2x,下列说法不正确的是
A. 点 −2,−1 在它的图象上B. 它的图象在第一、三象限
C. 它的图象关于原点中心对称D. y 的值随着 x 的值的增大而减小
4. 如图是关于某班同学一周体育锻炼情况的统计图,那么该班学生这一周参加体育锻炼时间的众数、中位数分别是
A. 8,9B. 8,8.5C. 16,8.5D. 16,14
5. 如果两圆的半径长分别为 5 和 3,圆心距为 7,那么这两个圆的位置关系是
A. 内切B. 外离C. 相交D. 外切
6. 平行四边形 ABCD 中,E,F 是对角线 BD 上不同的两点,下列条件中,不能得出四边形 AECF 一定为平行四边形的是
A. BE=DFB. AE=CF
C. AF∥CED. ∠BAE=∠DCF
二、填空题(共12小题;共60分)
7. 计算:x32÷−x2= .
8. 方程 3−x=2 的根为 .
9. 不等式组 3x+4≥0,12x−2≤1 的解集是 .
10. 已知正三角形的边心距为 1,那么它的边长为 .
11. 如果抛物线 y=a−1x2−1(a 为常数)不经过第二象限,那么 a 的取值范围是 .
12. 如果关于 x 的多项式 x2−2x+m 在实数范围内因式分解,那么实数 m 的取值范围是 .
13. 从 1,2,3,4 四个数中任意取出 2 个数做加法,其和为偶数的概率是 .
14. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文是“今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?大致意思是:“现有几个人共同购买一个物品,每人出 8 元,则多 3 元;每人出 7 元,则差 4 元.问人数、物品的价格各是多少?”如果设共有 x 人,物品的价格为 y 元,那么根据题意可列出方程组为 .
15. 已知甲乙两位运动员在一次射击训练中各打五发,成绩的平均环数相同,甲的方差为 1.6;乙的成绩(环)为 7,8,10,6,9,那么这两位运动员中的 成绩较稳定(填“甲”或“乙”)
16. 如图,已知在 △ABC 中,点 D 在边 AC 上,AD=2DC,AB=a,AC=b,那么 BD= (用含向量 a,b 的式子表示).
17. 如果一个四边形有且只有三个顶点在圆上,那么称这个四边形是该圆的“联络四边形”,已知圆的半径长为 5,这个圆的一个联络四边形是边长为 25 的菱形,那么这个菱形不在圆上的顶点与圆心的距离是 .
18. 如图,已知在 △ABC 中,∠C=90∘,BC=2,点 D 是边 BC 的中点,∠ABC=∠CAD,将 △ACD 沿直线 AD 翻折,点 C 落在点 E 处,连接 BE,那么线段 BE 的长为 .
三、解答题(共7小题;共91分)
19. 计算:412+212+2+1−1+2−10.
20. 解方程:xx+3−69−x2=1x−3.
21. 如图,在梯形 ABCD 中,AD∥BC,AD=2,BC=5,∠BAC=45∘,cs∠ACB=35.
(1)求线段 AC 的长;
(2)连接 BD,交对角线 AC 于点 O,求 ∠ADO 的余切值.
22. 如图反映了甲、乙两名自行车爱好者同时骑车从 A 地到 B 地进行训练时行驶路程 y(千米)和行驶时间 x(小时)之间关系的部分图象,根据图象提供的信息,解答下列问题:
(1)求乙的行驶路程 y 和行驶时间 x1≤x≤3 之间的函数解析式;
(2)如果甲的速度一直保持不变,乙在骑行 3 小时之后又以第 1 小时的速度骑行,结果两人同时到达 B 地,求 A,B 两地之间的距离.
23. 如图,已知四边形 ABCD 是矩形,点 E 在对角线 AC 上,点 F 在边 CD 上(点 F 与点 C,D 不重合),BE⊥EF,且 ∠ABE+∠CEF=45∘.
(1)求证:四边形 ABCD 是正方形;
(2)连接 BD,交 EF 于点 Q,求证:DQ⋅BC=CE⋅DF.
24. 如图,在平面直角坐标系 xOy 中,已知抛物线 y=x2+mx+n 经过点 A2,−2,对称轴是直线 x=1,顶点为点 B,抛物线与 y 轴交于点 C.
(1)求抛物线的表达式和点 B 的坐标;
(2)将上述抛物线向下平移 1 个单位,平移后的抛物线与 x 轴正半轴交于点 D,求 △BCD 的面积;
(3)如果点 P 在原抛物线上,且在对称轴的右侧,连接 BP 交线段 OA 于点 Q,BQPQ=15,求点 P 的坐标.
25. 已知 AB 是 ⊙O 的一条弦,点 C 在 ⊙O 上,连接 CO 并延长,交弦 AB 于点 D,且 CD=CB.
(1)如图 1,如果 BO 平分 ∠ABC,求证:AB=BC;
(2)如图 2,如果 AO⊥OB,求 AD:DB 的值;
(3)延长线段 AO 交弦 BC 于点 E,如果 △EOB 是等腰三角形,且 ⊙O 的半径长等于 2,求弦 BC 的长.
答案
第一部分
1. B【解析】A项为有理数;
B项为最简根式,是无理数;
C项是有理数;
D能够开方 9=3,是有理数.
2. C【解析】A项字母相同,x,y 的次数不同,不满足题意;
B项字母相同,x 的次数不同,不满足题意;
C项字母相同,次数相同,系数不同,但满足定义,此项正确;
D项字母相同,y 的次数不同,不满足题意.
3. D【解析】A项把坐标点代入函数表达式,等号两边相等,满足题意,此项正确;
B项函数系数 k=2>0,图象过一,三象限,满足题意,此项正确;
C项满足反比例函数特点:图象关于原点中心对称,此项正确;
D项函数系数 k=2>0,函数 y 的值随着 x 的值的增大而增大,此项错误.
4. A【解析】众数即出现次数最多的数据,由图中数据知道众数是 8,
由图中知道共有 40 个数据,中位数是从小到大排列,位于中间的两个数的平均数即为中位数,由图中数据知道是 9.
5. C
【解析】由题意得:
∵5−3=2,5+3=8,圆心距为 7,
∴2
相关试卷
这是一份2023年上海市长宁区中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年上海市长宁区中考二模数学试卷(含答案),共10页。试卷主要包含了 本试卷含三个大题,共25题, 下列命题中,假命题的是, 已知抛物线经过点A, 计算等内容,欢迎下载使用。
这是一份2022年上海市长宁区中考数学二模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。