2020-2021学年22.1.2 二次函数y=ax2的图象和性质教学设计
展开1.能够利用描点法作出二次函数y= x2的图象,并能根据图象总结和理解二次函数y= x2的性质.
2.能根据二次函数y= x2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标).
3.由二次函数y= x2的图象及性质类比地学习二次函数y=- x2的图象及性质,并能比较它们的异同点,培养类比学习能力,渗透数形结合的数学思想方法,发展学生的求同求异思维.
4.在利用图象讨论二次函数的性质时,尽可能多地合作交流,以便能够从多个角度看问题,进而比较准确地理解二次函数的性质.
教学重点
从“数”(解析式)和“形”(图象)的角度理解二次函数y=ax2的性质,掌握二次函数解析式y=ax2与函数图象的内在关系.
教学难点
用描点法画出二次函数y= ax2的图象以及探索二次函数性质.
课时安排
1课时.
教学方法
任务驱动法等.
课前准备
多媒体课件、课本等.
教学过程
一、导入新知
1.下列哪些函数是二次函数?哪些是一次函数?
(1)y=3x-1 (2)y=2x2+7
(3)y=x-2 (4)y=3(x-1)2+1
2.一次函数的图象,正比例函数的图象各是怎样的呢?它们各有什么特点,又有哪些性质呢?
3.上节课我们学习了二次函数的概念,掌握了它的一般形式,这节课我们先来探究二次函数中最简单的y=ax2的图象和性质.
二、探究新知
活动1:画函数y=-x2的图象.
(1)多媒体展示画法(列表,描点,连线).
(2)提出问题:它的形状类似于什么?
(3)引出一般概念:抛物线,抛物线的对称轴、顶点.
活动2:在坐标纸上画函数y=-0.5x2,y=-2x2的图象.
(1)教师巡视,展示学生的作品并进行点拨;教师再用多媒体课件展示正确的画图过程.
(2)引导学生观察二次函数y=-0.5x2,y=-2x2与函数y=-x2的图象,提出问题:它们有什么共同点和不同点?
(3)归纳总结:
共同点:①它们都是抛物线;②除顶点外都处于x轴的下方;③开口向下;④对称轴是y轴;⑤顶点都是原点(0,0).
不同点:开口大小不同.
(4)教师强调指出:这三个特殊的二次函数y=ax2是当a<0时的情况.系数a越大,抛物线开口越大.
活动3:在同一个直角坐标系中画函数y=x2,y=0.5x2,y=2x2的图象.
类似活动2:让学生归纳总结出这些图象的共同点和不同点,再进一步提炼出二次函数y=ax2(a≠0)的图象和性质.
二次函数y=ax2(a≠0)的图象和性质
活动4:达标检测
(1)函数y=-8x2的图象开口向________,顶点是________,对称轴是________,当x________时,y随x的增大而减小.
(2)二次函数y=(2k-5)x2的图象如图所示,则k的取值范围为________.
(3)如图,①y=ax2;②y=bx2;③y=cx2;④y=dx2.比较a,b,c,d的大小,用“>”连接________.
答案:(1)下,(0,0),x=0,>0;(2)k>2.5;(3)a>b>d>c.
三、归纳新知
1.二次函数的图象都是抛物线.
2.二次函数y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点;|a|越大,抛物线的开口越小.
四、作业布置
教材第32页 练习.
五、教后反思
图象
(草图)
开口
方向
顶
点
对称轴
最高或
最低点
最值
a>0当x=____时,
y有最____值,
是________.
a<0当x=____时,
y有最____值,
是________.
数学九年级上册22.1.1 二次函数优秀教学设计: 这是一份数学九年级上册22.1.1 二次函数优秀教学设计,共17页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。
初中人教版22.1.2 二次函数y=ax2的图象和性质教案及反思: 这是一份初中人教版22.1.2 二次函数y=ax2的图象和性质教案及反思,共4页。教案主要包含了情境导入,初步认识,思考探究,获取新知,运用新知,深化理解,师生互动,课堂小结等内容,欢迎下载使用。
初中数学人教版九年级上册22.1.1 二次函数教学设计: 这是一份初中数学人教版九年级上册22.1.1 二次函数教学设计,共2页。教案主要包含了提出问题,范例,做一做,归纳,课堂练习,作业等内容,欢迎下载使用。