![2019年北京市东城区中考数学二模试卷第1页](http://img-preview.51jiaoxi.com/2/3/12111325/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2019年北京市东城区中考数学二模试卷第2页](http://img-preview.51jiaoxi.com/2/3/12111325/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2019年北京市东城区中考数学二模试卷第3页](http://img-preview.51jiaoxi.com/2/3/12111325/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2019年北京市东城区中考数学二模试卷
展开
这是一份2019年北京市东城区中考数学二模试卷,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(共8小题;共40分)
1. 若分式 1x−3 有意义,则 x 的取值范围是
A. x≠3B. x3D. x=3
2. 若 a=13,则实数 a 在数轴上对应的点 P 的大致位置是
A. B.
C. D.
3. 如图是某几何体的三视图,该几何体是
A. 棱柱B. 圆柱C. 棱锥D. 圆锥
4. 二元一次方程组 x+y=2,x−y=−2 的解为
A. x=0,y=2B. x=0,y=−2C. x=2,y=0D. x=−2,y=0
5. 下列图形中,是中心对称图形但不是轴对称图形的是
A. B.
C. D.
6. 如图,在平面直角坐标系 xOy 中,点 A 的坐标为 1,3,点 B 的坐标为 2,1.将线段 AB 沿某一方向平移后,若点 A 的对应点 Aʹ 的坐标为 −2,0,则点 B 的对应点 Bʹ 的坐标为
A. 5,2B. −1,−2C. −1,−3D. 0,−2
7. 如图,某地修建高速公路,要从 A 地向 B 地修一条隧道(点 A,B 在同一水平面上).为了测量 A,B 两地之间的距离,一架直升飞机从 A 地起飞,垂直上升 1000 米到达 C 处,在 C 处观察 B 地的俯角为 α,则 A,B 两地之间的距离约为
A. 1000sinα 米B. 1000tanα 米C. 1000tanα 米D. 1000sinα 米
8. 如图 1,动点 P 从菱形 ABCD 的顶点 A 出发,沿 A→C→D 以 1 cm/s 的速度运动到点 D.设点 P 的运动时间为 xs,△PAB 的面积为 ycm2.表示 y 与 x 的函数关系的图象如图 2 所示,则 a 的值为
A. 5B. 52C. 2D. 25
二、填空题(共8小题;共40分)
9. 分解因式:x2y−y= .
10. 某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加东城区青少年科技创新大赛,表格反映的是各组平时成绩的平均数 x(单位:分)及方差 s2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是 .
甲乙丙丁
11. 如果 x−y=2,那么代数式 x+22−4x+yy−2x 的值是 .
12. 如图所示的网格是正方形网格,点 A,B,C,D 均落在格点上,则 ∠BAC+∠ACD= ∘.
13. 如图,在平面直角坐标系 xOy 中,若直线 y1=−x+a 与直线 y2=bx−4 相交于点 P1,−3,则关于 x 的不等式 −x+a0,则一次函数 y=kx+b 的图象经过第一、二、三象限”是错误的,这组值可以是 k= ,b= .
15. 如图,B,C,D,E 为 ⊙A 上的点,DE=5,∠BAC+∠DAE=180∘,则圆心 A 到弦 BC 的距离为 .
16. 运算能力是一项重要的数学能力.王老师为帮助学生诊断和改进运算中的问题,对全班学生进行了三次运算测试.下面的气泡图中,描述了其中 5 位同学的测试成绩(气泡圆的圆心横、纵坐标分别表示第一次和第二次测试成绩,气泡的大小表示三次成绩的平均分的高低;气泡越大平均分越高).
①在 5 位同学中,有 位同学第一次成绩比第二次成绩高;
②在甲、乙两位同学中,第三次成绩高的是 (填“甲”或“乙”).
三、解答题(共12小题;共156分)
17. 下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.
已知:四边形 ABCD 是平行四边形.
求作:菱形 ABEF(点 E 在 BC 上,点 F 在 AD 上).
作法:① 以 A 为圆心,AB 长为半径作弧,交 AD 于点 F;
② 以 B 为圆心,AB 长为半径作弧,交 BC 于点 E;
③ 连接 EF.
所以四边形 ABEF 为所求作的菱形.
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵AF=AB,BE=AB,
∴ = .
在平行四边形 ABCD 中,AD∥BC,即 AF∥BE.
∴ 四边形 ABEF 为平行四边形.
∵AF=AB,
∴ 四边形 ABEF 为菱形( )(填推理的依据).
18. 计算:π−20190+2−1+12−1−2sin45∘.
19. 解不等式 2x−13−5x+12≥1,并把解集在数轴上表示出来.
20. 关于 x 的一元二次方程 x2−mx+m−1=0.
(1)求证:方程总有两个实数根;
(2)若方程有一根大于 3,求 m 的取值范围.
21. 如图,在 △ABC 中,AB=AC,D 为 BC 中点,AE∥BD,且 AE=BD.
(1)求证:四边形 AEBD 是矩形.
(2)连接 CE 交 AB 于点 F,若 ∠ABE=30∘,AE=2,求 EF 的长.
22. 在平面直角坐标系 xOy 中,直线 y=kx+2 与双曲线 y=6x 的一个交点是 Am,3.
(1)求 m 和 k 的值;
(2)设点 P 是双曲线 y=6x 上一点,直线 AP 与 x 轴交于点 B.若 AB=3PB,结合图象,直接写出点 P 的坐标.
23. 2019 年中国北京世界园艺博览会已于 2019 年 4 月 29 日在北京市延庆区开展,吸引了大批游客参观游览.五一小长假期间平均每天入园人数大约是 8 万人,佳佳等 5 名同学组成的学习小组,随机调查了五一假期中入园参观的部分游客,获得了他们在园内参观所用时间,并对数据进行整理,描述和分析,下面给出了部分信息.
a.参观时间的频数分布表如下:
时间t时频数人数频率1≤t0,
∴m=2.
(3) k 的取值范围为:12≤k3.
27. (1) ∵ 线段 AD 绕点 A 逆时针旋转 60∘ 得到线段 AE,
∴△ADE 是等边三角形.
在等边 △ABC 和等边 △ADE 中,
AB=AC,AD=AE,∠BAC=∠DAE=60∘,
∴∠BAD=∠CAE.
在 △BAD 和 △CAE 中,
AB=AC,∠BAD=∠CAE,AD=AE,
∴△BAD≌△CAESAS.
∴BD=CE.
(2) 如图,过点 C 作 CG∥BP 交 DF 的延长线于点 G.
∴∠G=∠BDF,
∵∠ADE=60∘,∠ADB=90∘,
∴∠BDF=30∘.
∴∠G=30∘.
由(1)可知,BD=CE,∠CEA=∠BDA.
∵AD⊥BP,
∴∠BDA=90∘,
∴∠CEA=90∘,
∵∠AED=60∘,
∴∠CED=30∘=∠G,
∴CE=CG,
∴BD=CG,
在 △BDF 和 △CGF 中,
∠BDF=∠G,∠BFD=∠CFG,BD=CG,
∴△BDF≌△CGFAAS,
∴BF=FC,即 F 为 BC 的中点.
(3) 1.
28. (1) ∵A2,0,B0,2,
∴△AOB 是等腰直角三角形,
如图,作 OH⊥AB 于点 H,
∴ 点 H 是 AB 的中点.
∵AB=22,
∴d(点 O,直线 AB)=OH=2.
(2) 2−22≤t≤2+22.
(3) k=−3+2 或 k=1−2.
相关试卷
这是一份2023年北京市东城区中考数学二模试卷(含解析),共29页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023年北京市东城区中考数学一模试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年北京市东城区中考数学一模试卷及答案,共12页。