终身会员
搜索
    上传资料 赚现金
    立即下载
    加入资料篮
    18.2 第2课时 平行四边形的判定定理3课件PPT01
    18.2 第2课时 平行四边形的判定定理3课件PPT02
    18.2 第2课时 平行四边形的判定定理3课件PPT03
    18.2 第2课时 平行四边形的判定定理3课件PPT04
    18.2 第2课时 平行四边形的判定定理3课件PPT05
    18.2 第2课时 平行四边形的判定定理3课件PPT06
    18.2 第2课时 平行四边形的判定定理3课件PPT07
    18.2 第2课时 平行四边形的判定定理3课件PPT08
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学华师大版八年级下册18.2 平行四边形的判定评课课件ppt

    展开
    这是一份初中数学华师大版八年级下册18.2 平行四边形的判定评课课件ppt,共26页。PPT课件主要包含了学习目标,复习引入,导入新课,讲授新课,证一证,同理可证AD∥BC,归纳总结,∵AECF,又∵BODO,典例精析等内容,欢迎下载使用。

    1.利用对角线互相平分判定平行四边形;(重点)
    2.平行四边形对角线互相平分的相关运用;(难点)
    3.利用两组对角相等判定平行四边形.(重点)
    问题1 除了两组对边分别平行,平行四边形还有哪些性质?
    平行四边形的对角相等.
    平行四边形的对角线互相平分.
    思考 我们得到的这些逆命题是否都成立?这节课我们一起探讨一下吧.
    问题2 上面的两条条性质的逆命题各是什么?
    两组对角分别相等的四边形是平行四边形;
    对角线互相平分的四边形是平行四边形.
    如图,将两根细木条AC、BD的中点重叠,用小钉固定在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD.转动两根木条,四边形ABCD一直是一个平行四边形吗?
    猜想:四边形ABCD一直是一个平行四边形.
    你能根据平行四边形的定义证明它们吗?
    已知:四边形ABCD中,OA=OC,OB=OD.求证:四边 形ABCD是平行四边形.
    在△AOB和△COD中,
    OA=OC (已知),
    OB=OD (已知),
    ∠AOB=∠COD (对顶角相等),
    ∴△AOB≌△COD(SAS),
    ∴ ∠BAO=∠OCD ,
    ∴AB∥ CD ,
    ∴四边形ABCD是平行四边形.
    平行四边形的判定定理3:对角线互相平分的四边形是平行四边形.
    几何语言描述:在四边形ABCD中,∵AO=CO,DO=BO,∴四边形ABCD是平行四边形.
    例1 如图, □ABCD 的对角线AC,BD相交于点O,E,F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.
    证明:∵四边形ABCD是平行四边形,
    ∴ AO=CO,BO=DO.
    ∴ AO-AE=CO-CF,即EO=OF.
    ∴四边形BFDE是平行四边形.
    【变式题】如图,AC是平行四边形ABCD的一条对角线,BM⊥AC于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.
    解:四边形BMDN是平行四边形.理由如下:连接BD交AC于O.∵BM⊥AC于M,DN⊥AC于N,∴∠AND=∠CMB=90°.∵四边形ABCD是平行四边形,∴OB=OD,AO=CO,AD=BC,AD∥BC,∴∠DAN=∠BCM,∴△ADN≌△CBM,∴AN=CM,∴OA-AN=OC-CM,即ON=OM,∴四边形BMDN是平行四边形.
    拓展探究 昨天李明同学在生物实验室做实验时,不小心碰碎了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示部分,他想回家去割一块赔给学校,带上玻璃剩下部分去玻璃店不安全,于是他想把原来的平行四边形重新在纸上画出来,然后带上图纸去就行了,可怎么画出原来的平行四边形呢(A,B,C为三顶点,即找出第四个顶点D)?
    方法依据:两组对边分别平行的四边形是平行四边形.
    方法依据:两组对边分别相等的四边形是平行四边形.
    方法依据:对角线互相平分的四边形是平行四边形.
    1.根据下列条件,不能判定四边形为平行四边形的是 ( )A.两组对边分别相等 B.两条对角线互相平分C.两条对角线相等 D.两组对边分别平行
    2.如图,在四边形ABCD中,AC与BD交于点O.
    如果AC=8cm,BD=10cm,那么当AO=_____cm,BO=_____cm时,四边形ABCD是平行四边形.
    观看下面视频,对于两组对角分别相等的四边形的形状你的猜想是什么?
    已知:四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.
    又∵∠A=∠C,∠B=∠D,
    ∵∠A+∠C+∠B+∠D=360°,
    ∴2∠A+2∠B=360°,
    即∠A+∠B=180°,
    同理得 AB∥ CD,
    平行四边形的判定定理:两组对角分别相等的四边形是平行四边形.
    几何语言描述:在四边形ABCD中,∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形.
    例2 如图,四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.
    (1)解:∵∠D+∠2+∠1=180°,∴∠D=180°-∠2-∠1=55°;(2)证明:∵AB∥DC,∴∠2=∠CAB,∴∠DAB=∠1+∠2=125°.∵∠DCB+∠DAB+∠D+∠B=360°,∴∠DCB=∠DAB=125°.又∵∠D=∠B=55°,∴四边形ABCD是平行四边形.
    1.判断下列四边形是否为平行四边形:
    2.能判定四边形ABCD是平行四边形的条件: ∠A:∠B:∠C:∠D的值为 (  )
    A. 1:2:3:4
    B. 1:4:2:3
    C. 1:2:2:1
    D. 3:2:3:2
    卢师傅要做一个平行四边形木框.他要从图中几根木条中选出四根来制作,可是他不知道该怎样选,请同学们帮他选一选,哪四根木条可以制作成平行四边形木框,为什么?
    发现:一组对边平行,另一组对边相等的四边形不一定是平行四边形.两组边相等的四边形也不一定是平行四边形.
    想一想:判定一个四边形是平行边形可以从哪些角度思考?具体有哪些方法?
    两组对边分别平行的四边形是平行四边形(定义法)
    一组对边平行且相等的四边形是平行四边形(判定定理2)
    两组对边分别相等的四边形是平行四边形(判定定理1)
    两组对角分别相等的四边形是平行四边形(定义拓展)
    对角线互相平分的四边形是平行四边形(判定定理3)
    1.判断对错:(1)有一组对边平行的四边形是平行四边形. ( ) (2)有两条边相等,并且另外的两条边也相等的四边 形一定是平行四边形. ( )(3)对角线互相平分的四边形是平行四边形. ( ) (4)一条对角线平分另一条对角线的四边形是平行四 边形. ( )(5)有一组对角相等且一组对边平行的四边形是平行 四边形. ( )
    2.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形(  )A.OA=OC,OB=OD B.AB=CD,AO=CO C.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD
    3.如图,五边形ABCDE是正五边形,连接BD、CE,交于点P. 求证:四边形ABPE是平行四边形.
    证明:∵五边形ABCDE是正五边形,∴正五边形的每个内角的度数是 AB=BC=CD=DE=AE,∴∠DEC=∠DCE= ×(180°-108°)=36°,同理∠CBD=∠CDB=36°,∴∠ABP=∠AEP=108°-36°=72°,∴∠BPE=360°-108°-72°-72°=108°=∠A,∴四边形ABPE是平行四边形.
    4.如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC于F,DE∥AC交AB于E,求DE+DF的值.
    解:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DE=AF.又∵AB=AC=10,∴∠B=∠C.∵DF∥AB,∴∠CDF=∠B,∴∠CDF=∠C,∴DF=CF,∴DE+DF=AF+FC=AC=10.
    相关课件

    初中数学沪科版八年级下册18.2 勾股定理的逆定理优质课件ppt: 这是一份初中数学沪科版八年级下册18.2 勾股定理的逆定理优质课件ppt,文件包含第1课时勾股定理的逆定理ppt、第2课时勾股定理的逆定理的应用ppt、182勾股定理的逆定理doc等3份课件配套教学资源,其中PPT共36页, 欢迎下载使用。

    数学八年级下册18.2 平行四边形的判定优质课ppt课件: 这是一份数学八年级下册18.2 平行四边形的判定优质课ppt课件,文件包含华东师大版中学数学八年级下182平行四边形的判定第2课时利用对角线判定平行四边形教学课件pptx、第18章平行四边形182平行四边形的判定第2课时docx、182平行四边形的判定第2课时同步练习docx等3份课件配套教学资源,其中PPT共14页, 欢迎下载使用。

    沪科版八年级下册18.2 勾股定理的逆定理获奖ppt课件: 这是一份沪科版八年级下册18.2 勾股定理的逆定理获奖ppt课件,共27页。PPT课件主要包含了回顾与思考,勾股定理,勾股定理的逆定理,快速填一填,解根据题意得,练一练,解连接AC,用到了方程的思想等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map