初中数学浙教版九年级上册第3章 圆的基本性质综合与测试课时作业
展开一、选择题
1.下列说法正确的是( )
A.长度相等的弧是等弧
B.相等的圆心角所对的弧相等
C.面积相等的圆是等圆
D.劣弧一定比优弧短
2.生活中处处有数学,下列原理运用错误的是( )
A.建筑工人砌墙时拉的参照线是运用“两点之间线段最短”的原理
B.修理损坏的椅子腿时斜钉的木条是运用“三角形稳定性”的原理
C.测量跳远的成绩是运用“垂线段最短”的原理
D.将车轮设计为圆形是运用了“圆的旋转对称性”原理
3.如图,在半径为13cm圆形铁片上切下一块高为8cm弓形铁片,则弓形弦AB长为( ).
A.10cm B.16cm C.24cm D.26cm
4.⊙O的半径为5,圆心O到直线l的距离为3,下列位置关系正确的是( )
A. B. C. D.
5.如图,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于( )
A.20° B.25° C.30° D.40°
6.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=( )
A.130° B.100° C.50° D.65°
7.在△ABC中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是( )
A. B.1 C.2 D.
8.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )
A.eq \f(\r(2),2) B.eq \f(\r(3),2) C.eq \r(2) D.eq \r(3)
9.用扇形纸片制作一个圆锥的侧面,要求圆锥的高是4 cm,底面圆周长是6π cm,则扇形的半径为( )
A.3 cm B.5 cm C.6 cm D.8 cm
10.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB于点D,则图中阴影部分的面积为( )
A.π﹣ B.π﹣ C.π﹣ D.π﹣
二、填空题
11.如图,AB为⊙O的直径,点C,D在⊙O上,已知∠BOC=70°,AD∥OC,则∠AOD= .
12.如图,△ABC中,∠ACB=90°,∠A=40°,以C为圆心、CB为半径的圆交AB于点D,
则∠ACD= 度.
13.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=____度.
14.若直角三角形两边的长分别为16和12,则此三角形的外接圆半径是________.
15.正八边形的中心角等于________度.
16.已知扇形面积为 SKIPIF 1 < 0 ,圆心角为60°,则这个扇形的半径R=____.
17.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是 .
18.如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.若OA=2,则阴影部分的面积为 .
三、作图题
19.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点A(5,2)、B(5,5)、C(1,1)均在格点上
(1)将△ABC向左平移5个单位得到△A1B1C1,并写出点A1的坐标;
(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1,并写出点A2的坐标;
(3)在(2)的条件下,求△A1B1C1在旋转过程中扫过的面积(结果保留π).
四、解答题
20.如图,已知AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?
21.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.
(1)求证:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的长.
22.已知:如图,AB是⊙O的直径,AD是弦,OC垂直AD于F交⊙O于E,连接DE、BE,且∠C=∠BED.
(1)求证:AC是⊙O的切线;
(2)若OA=10,AD=16,求AC的长.
23.如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°.
(1)求证:BD是⊙O的切线;
(2)求图中阴影部分的面积.
24.如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.
(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;
(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.
25.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线
BE的垂线交AB于点F,⊙O是△BEF的外接圆.
(1)求证:AC是⊙O的切线;
(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;
(3)求证:CD=HF.
参考答案
1.答案为:C.
2.答案为:A.
3.答案为:C.
4.答案为:B.
5.答案为:A
6.答案为:A.
7.答案为:B.
8.答案为:A;
9.答案为:B.
10.答案为:A.
11.答案为:40°.
12.答案为:10°
13.答案为:45
14.答案为:10或8.
15.答案为:45
16.答案为: SKIPIF 1 < 0 .
17.答案为:150°.
18.答案为:+π.
19.解:
(1)如图所示,;
(2)如图所示,
(3)
20.解:AC与BD相等.理由如下:
连结OC、OD,如图,
∵OA=OB,AE=BF,
∴OE=OF,
∵CE⊥AB,DF⊥AB,
∴∠OEC=∠OFD=90°,
在Rt△OEC和Rt△OFD中,
,
∴Rt△OEC≌Rt△OFD(HL),
∴∠COE=∠DOF,
∴AC弧=BD弧,
∴AC=BD.
21.(1)证明:∵AB为⊙O的直径,
∴∠ACB=90°,∴AC⊥BC,
又∵DC=CB,∴AD=AB,
∴∠B=∠D;
(2)解:设BC=x,则AC=x﹣2,
在Rt△ABC中,AC2+BC2=AB2,
∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),
∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,
∵CD=CB,
∴CE=CB=1+.
22.(1)证明:∵∠BED=∠BAD,∠C=∠BED,
∴∠BAD=∠C.
∵OC⊥AD于点F,
∴∠BAD+∠AOC=90°.
∴∠C+∠AOC=90°.
∴∠OAC=90°.
∴OA⊥AC.
∴AC是⊙O的切线.
(2)解:∵OC⊥AD于点F,
∴AF=AD=8.
在Rt△OAF中,OF==6,
∵∠AOF=∠AOC,∠OAF=∠C,
∴△OAF∽△OCA.
∴.即OC=.
在Rt△OAC中,AC=.
23.解:(1)证明:连接OB,交CA于E,
∵∠C=30°,∠C=∠BOA,∴∠BOA=60°,
∵∠BCA=∠OAC=30°,∴∠AEO=90°,即OB⊥AC,
∵BD∥AC,∴∠DBE=∠AEO=90°,
∴BD是⊙O的切线;
(2)解:∵AC∥BD,∠OCA=90°,∴∠D=∠CAO=30°,
∵∠OBD=90°,OB=8,∴BD=OB=8,
∴S阴影=S△BDO﹣S扇形AOB=×8×8﹣=32﹣.
24.解:∵在等腰△ABC中,∠BAC=120°,
∴∠B=30°,
∵AD是∠BAC的角平分线,
∴AD⊥BC,BD=CD,
∴BD=AD=6,
∴BC=2BD=12,
∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积
=S△ABC﹣S扇形EAF=×6×12﹣=36﹣12π;
(2)设圆锥的底面圆的半径为r,
根据题意得2πr=,解得r=2,
这个圆锥的高h==4.
25.(1)证明:(1)如图,连接OE.
∵BE⊥EF,∴∠BEF=90°,
∴BF是圆O的直径,
∴OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∴∠OEB=∠CBE,
∴OE∥BC,
∴∠AEO=∠C=90°,
∴AC是⊙O的切线;
(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA,
∴BEC=∠BEH,
∵BF是⊙O是直径,
∴∠BEF=90°,
∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,
∴∠FEH=∠FEA,
∴FE平分∠AEH.
(3)证明:如图,连结DE.
∵BE是∠ABC的平分线,EC⊥BC于C,EH⊥AB于H,
∴EC=EH.
∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,
∴∠CDE=∠HFE,
∵∠C=∠EHF=90°,
∴△CDE≌△HFE(AAS),
∴CD=HF,
浙教版九年级上册3.1 圆精品精练: 这是一份浙教版九年级上册3.1 圆精品精练,共21页。试卷主要包含了下列说法正确的是,如图,在中,,,则的度数为等内容,欢迎下载使用。
数学九年级上册第3章 圆的基本性质3.1 圆精品随堂练习题: 这是一份数学九年级上册第3章 圆的基本性质3.1 圆精品随堂练习题,共27页。试卷主要包含了如图,四边形是的内接四边形,圆的有关概念等内容,欢迎下载使用。
九年级上册第3章 圆的基本性质3.1 圆精品同步训练题: 这是一份九年级上册第3章 圆的基本性质3.1 圆精品同步训练题,文件包含第3章圆的基本性质本章综合检测本书习题参考答案pdf、第3章圆的基本性质本章综合检测pdf等2份试卷配套教学资源,其中试卷共5页, 欢迎下载使用。