初中湘教版第2章 三角形2.4 线段的垂直平分线教案设计
展开【课时安排】
2课时。
【第一课时】
【教学目标】
(一)知识要求:
了解线段垂直平分线的性质和判定。
(二)能力训练要求:
1.经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念。
2.探索并了解线段垂直平分线的有关性质和判定。
(三)情感与价值要求:
通过师生的共同活动,培养学生的动手能力,进一步发展其空间观念。
【教学重难点】
1.重点:探索线段垂直平分线的性质。
2.难点:体验轴对称的特征。
【教学过程】
(一)巧设现实情景,引入新课。
1.我们探讨了轴对称图形,知道现实生活中由于有轴对称图形,而显得异常美丽。那什么样的图形是轴对称图形呢?
如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2.大家想一想,我们以前学过的哪些几何图形是轴对称图形呢?
正方形、矩形、圆、菱形、等腰三角形、角、线段。
3.刚才有人提出“线段是轴对称图形”。今天我们就来研究这个简单的轴对称图形。
(二)讲授新课。
1.线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗?
线段是轴对称图形,它的对称轴是与线段垂直的且垂足是线段中点的直线。
线段还可以沿它所在的直线对折,使得与原来的线段重合,所以说:线段所在的直线也是线段的对称轴。
(1)画一条线段AB,对折AB使点A、B重合,折痕与AB的交点为O。
问:OA=OB吗?折痕与直线所成的两个角是多少度?
折痕(即线段的对称轴)与线段有什么关系?
(2)讨论交流后小结:垂直且平分一条线段的直线叫做这条线段的垂直平分线简称中垂线。线段是轴对称图形,它的对称轴就是线段的垂直平分线。
做一做:你能画出线段的对称轴吗?
任意画一条线段,然后用带有刻度的直角三角板画出线段的垂直平分线。
2.按照下面的步骤来做一做:
(1)由上面的知识可知:CO与AB有怎样的位置关系?OA与OB相等吗?
(2)那CA与CB相等吗?能说明你的理由吗?在折痕上另取一点,再试一试。
(3)那由此可以得到什么样的结论呢?同学们讨论、归纳。
从刚才操作的过程及得出的结论可以知道:线段的垂直平分线上的点到这条线段两个端点的距离相等。
小结:线段垂直平分线的性质:
线段垂直平分线上的点到线段两个端点的距离相等。
这个性质具有绝对性。
3.做一做。
(1)有一条线段AB,如果直线MN是线段AB的垂直平分线,那么如果给出一点C,且C点在直线MN上,那么可得出什么结论?如果有一点P不在直线MN上,PA、PB相等吗?
(2)如图,线段AB.BC的垂直平分线相交于点P,试问线段PA、PB、PC的长度相等吗?
3.问:反过来——到线段两端点距离相等的点在线段的垂直平分线上吗?
学生讨论交流后小结:线段垂直平分的判定:
到线段两端点距离相等的点在线段的垂直平分线上。
(三)课堂练习。
练习1、2。
(四)课堂小结。
这节课通过探索简单图形轴对称的过程,了解线段垂直平分线的有关性质。同学们应灵活应用这些性质来解决问题。
【作业布置】
A组:1、2、3题。
课外活动与探究。
如图所示:要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短。
作点A关于l(街道看成是一条直线。)的轴对称点A′,连接A′B与l交于C点。奶站应建在C点处,才能使从A、B到它的距离之和最短。
【第二课时】
【教学目标】
(一)知识要求:
了解线段垂直平分线垂线的作法。
(二)能力训练要求:
1.经历作图探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念。
2.探索并了解线段垂直平分线的有关性质和判定。
【教学重难点】
1.重点:探索线段垂直平分线的性质。
2.难点:体验轴对称的特征。
【教学过程】
(一)教学提问,引入新课。
问1:根据所学知识只用圆规和直尺(不量长度)你能做出线段的垂直平分线吗?
(二)教授新课:
1.做出线段的垂直平分线。
作法:
(1)分别以点A、B为圆心,以大于AB的长为半径画弧,两弧相交于点C、D。
(2)作直线CD。
所以直线CD就是线段AB的垂直平分线。
问:
(1)这样所作的直线为什么是线段的垂直平分线?
(2)你能做出线段AB的中点吗?
2.过一点作已知直线的垂线。
问1:
过已知直线l外一点P你能做这条直线l的垂线CD吗?(只用圆规和直尺。)
作法:
(1)以P点为圆心,以大于点P到直线l的距离为半径画弧,交直线l于A、B两点;
(2)分别以点A、B为圆心,以大于AB的长为半径画弧,两弧相交于点C、D;
(3)作直线CD。
所以直线CD就是直线l的垂线。
问2:
过已知直线l上一点P你能做这条直线l的垂线CD吗?(只用圆规和直尺。)
(类似问题2作法。)
(三)练习。
课本1.2。
(四)小结。
本节课主要是过一点作已知直线的垂线的作法。
【作业布置】
习题2.3:A组4、5。(1)在折痕上任取一点C,沿CA将纸折叠。
(2)把纸展开,得到折痕CA和CB。
数学八年级上册2.1 三角形一等奖教学设计及反思: 这是一份数学八年级上册2.1 三角形一等奖教学设计及反思,共4页。
初中数学湘教版八年级上册2.4 线段的垂直平分线优质教学设计: 这是一份初中数学湘教版八年级上册2.4 线段的垂直平分线优质教学设计,共4页。
湘教版八年级上册第2章 三角形2.1 三角形教学设计: 这是一份湘教版八年级上册第2章 三角形2.1 三角形教学设计,共10页。教案主要包含了课时安排,第一课时,教学目标,教学重点,教学难点,教学过程,作业布置,第二课时等内容,欢迎下载使用。