年终活动
搜索
    上传资料 赚现金
    英语朗读宝
    5.3.1 样本空间与事件  学案第1页
    5.3.1 样本空间与事件  学案第2页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教B版 (2019)必修 第二册5.3.1 样本空间与事件导学案

    展开

    这是一份人教B版 (2019)必修 第二册5.3.1 样本空间与事件导学案,共5页。学案主要包含了学习目标,学习重难点,学习过程等内容,欢迎下载使用。
    【学习目标】
    1.了解必然现象和随机现象,了解不可能事件、必然事件及随机事件.
    2.理解样本点的定义,会求试验中的样本空间以及事件A包含的样本点的个数.
    【学习重难点】
    1.事件.
    2.样本空间.
    【学习过程】
    一、问题预习
    预习教材,思考以下问题:
    1.必然现象和随机现象是如何定义的?
    2.事件分为哪三类?
    3.样本点和样本空间是如何定义的?
    二、新知探究
    1.样本点与样本空间
    连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.
    (1)写出这个试验的样本空间;
    (2)求这个试验的样本点的总数;
    (3)“恰有两枚正面向上”这一事件包含哪几个样本点?
    【解】
    (1)试验的样本空间Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)}.
    (2)样本点的总数是8.
    (3)“恰有两枚正面向上”包含以下3个样本点:(正,正,反),(正,反,正),(反,正,正).
    2.事件类型的判断
    判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件.
    (1)“抛一石块,下落”;
    (2)“在标准大气压下且温度低于0℃时,冰融化”;
    (3)“某人射击一次,中靶”;
    (4)“如果a>b,那么a-b>0”;
    (5)“掷一枚硬币,出现正面”;
    (6)“导体通电后,发热”;
    (7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;
    (8)“某电话机在1分钟内收到2次呼叫”;
    (9)“没有水分,种子能发芽”;
    (10)“在常温下,焊锡熔化”.
    【解】
    事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;事件(3)(5)(7)(8)是随机事件.
    3.随机事件的概率
    做掷红、蓝两颗骰子的试验,用(x,y)表示结果,其中x表示红色骰子出现的点数,y表示蓝色骰子出现的点数.
    (1)写出这个试验的所有可能的结果;
    (2)求这个试验共有多少种不同的结果;
    (3)写出事件“出现的点数之和大于8”包含的结果;
    (4)写出事件“出现的点数相同”包含的结果;
    (5)记“出现的点数之和大于8”为A,记“出现的点数相同”为B,从直观上判断P(A)与P(B)的大小.
    【解】(1)这个试验所有可能的结果为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).
    (2)由(1)知这个试验不同的结果共有36种.
    (3)事件“出现的点数之和大于8”包含的结果为(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).
    (4)事件“出现的点数相同”包含的结果为(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).
    (5)事件A出现了10次,事件B出现了6次,故P(A)>P(B).
    三、学习小结
    1.样本点与样本空间
    (1)必然现象与随机现象
    (2)样本点:随机试验中每一种可能出现的结果.
    (3)样本空间
    ①定义:由所有样本点组成的集合称为样本空间.
    ②表示:样本空间常用大写希腊字母Ω表示.
    2.随机事件
    (1)如果随机试验的样本空间为Ω,则随机事件A是Ω的一个非空真子集.而且:若试验的结果是A中的元素,则称A发生;否则,称A不发生.
    (2)每次试验中Ω一定发生,从而称Ω为必然事件;又因为空集∅不包含任何样本点,因此可以认为每次试验中∅一定不发生,从而称∅为不可能事件.
    (3)一般地,不可能事件、随机事件、必然事件都可简称为事件,通常用大写英文字母A,B,C,…来表示事件.因为事件一定是样本空间的子集,从而可以用表示集合的维恩图来直观地表示事件,特别地,只含有一个样本点的事件称为基本事件.
    3.随机事件的概率
    事件发生的可能性大小可以用该事件的概率来衡量,概率越大代表越有可能发生.事件A的概率通常用P(A)表示.不可能事件∅的概率规定为0,必然事件Ω的概率规定为1,即P(∅)=0,P(Ω)=1.
    对任意事件A,P(A)应该满足不等式0≤P(A)≤1.
    四、精炼反馈
    1.下列现象:
    ①当x是实数时,x-|x|=2;
    ②某班一次数学测试,及格率低于75%;
    ③从分别标有0,1,2,3,…,9这十个数字的纸团中任取一个,取出的纸团是偶数;
    ④体育彩票某期的特等奖号码.
    其中是随机现象的是( )
    A.①②③ B.①③④
    C.②③④ D.①②④
    解析:选C.由随机现象的定义知②③④正确.
    2.下列事件中,是不可能事件的是( )
    A.三角形的内角和为180°
    B.三角形中大角对大边,小角对小边
    C.锐角三角形中两内角和小于90°
    D.三角形中任意两边之和大于第三边
    解析:选C.锐角三角形中两内角和大于90°.
    3.同时投掷两枚大小相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的样本点的个数是( )
    A.3 B.4
    C.5 D.6
    解析:选D.有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个样本点.
    4.甲、乙两人做出拳游戏(锤、剪、布).
    (1)写出样本空间;
    (2)写出事件“甲赢”;
    (3)写出事件“平局”.
    解:(1)用(锤、剪)表示甲出锤,乙出剪,其他的样本点用类似方法表示,则Ω={(锤,剪),(锤,布),(锤,锤),(剪,锤),(剪,剪),(剪,布),(布,锤),(布,剪),(布,布)}.
    (2)记“甲赢”为事件A,则A={(锤,剪),(剪,布),(布,锤)}.
    (3)记“平局”为事件B,则B={(锤,锤),(剪,剪),(布,布)}.现象
    条件
    特征
    必然现象
    在一定条件下
    发生的结果事先能确定的现象
    随机现象
    发生的结果事先不能确定的现象

    相关学案

    人教A版 (2019)必修 第二册10.1 随机事件与概率导学案:

    这是一份人教A版 (2019)必修 第二册10.1 随机事件与概率导学案,共4页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,课堂小结,参考答案等内容,欢迎下载使用。

    人教A版 (2019)必修 第二册10.1 随机事件与概率学案:

    这是一份人教A版 (2019)必修 第二册10.1 随机事件与概率学案,共8页。

    高中数学人教B版 (2019)必修 第二册第五章 统计与概率5.3 概率5.3.1 样本空间与事件学案及答案:

    这是一份高中数学人教B版 (2019)必修 第二册第五章 统计与概率5.3 概率5.3.1 样本空间与事件学案及答案,共7页。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map