终身会员
搜索
    上传资料 赚现金
    【新教材精创】11.4.2 平面与平面垂直(2)导学案(2)-人教B版高中数学必修第四册
    立即下载
    加入资料篮
    【新教材精创】11.4.2 平面与平面垂直(2)导学案(2)-人教B版高中数学必修第四册01
    【新教材精创】11.4.2 平面与平面垂直(2)导学案(2)-人教B版高中数学必修第四册02
    【新教材精创】11.4.2 平面与平面垂直(2)导学案(2)-人教B版高中数学必修第四册03
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教B版 (2019)必修 第四册11.4.2 平面与平面垂直学案设计

    展开
    这是一份人教B版 (2019)必修 第四册11.4.2 平面与平面垂直学案设计,共13页。学案主要包含了情境与问题等内容,欢迎下载使用。

    11.4.2 平面与平面垂直(2)  

    1.掌握面面垂直的性质定理.

    2.灵活运用线面、面面垂直的判定定理和性质定理解决空间中的位置关系问题.

    重点:掌握面面垂直的性质定理.

    难点:灵活运用线面、面面垂直的判定定理和性质定理解决空间中的位置关系问题

                                           1.二面角

    概念

    平面内的一条直线把平面分成两部分,其中的每一部分通称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的,这两个半平面叫做二面角的.

    图示

    平面角定义

    在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于的射线,则这两条射线构成的称为二面角的平面角

    图示

    符号

    OAαOBβαβlOlOAlOBlAOB是二面角的平面角

    范围

    [0π]

    规定

    二面角的大小用它的平面角的大小来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面角

    记法

    棱为l,面分别为αβ的二面角记为α­l­β.如图所示,也可在αβ(棱以外的半平面部分)分别取点PQ,将这个二面角记作二面角P­l­Q.

     2.平面与平面垂直

    (1)定义:两个平面相交,如果它们所成的二面角的大小为90°,则称这两个平面互相垂直.平面α与平面β垂直,记作αβ.

    (2)画法:两个互相垂直的平面通常把直立平面的竖边画成与水平平面的横边垂直,如图所示.

    (3)面面垂直的判定定理

    文字语言

    图形语言

    符号语言

    如果一个平面经过另外一个平面的一条垂线,则这两个平面垂直

    αβ

    (4)面面垂直的性质定理

    文字语言

    如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面

    符号语言

    aβ

    图形语言

     

    一、情境与问题

    平面与平面垂直的性质定理:

    如果平面与平面相互垂直,能得出什么性质呢?

     

    面面垂直的性质定理

    文字语言

    如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面

    符号语言

    aβ

    图形语言

     

     1.如图所示,已知,在的交线上取线段,且分别在平面和平面内,它们都垂直于交线,并且,求的长。

    2. 如图,PABC所在平面外的一点,且PA平面ABC,平面PAC平面PBC

    求证:BCAC

     

     

      1.平面与平面垂直的性质定理的三个作用

    (1)证明直线与平面垂直.

    (2)证明直线与直线平行.

    (3)作平面的垂线.

    2.垂直间的相互转换

    跟踪训练1. 如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是边长为a的菱形且DAB60°,侧面PAD为正三角形,其所在平面垂直于底面ABCD.

    (1)GAD的中点,求证:BG平面PAD

    (2)求证:ADPB.

    平面与平面垂直的判定和性质定理综合应用

    3.如图所示,已知中,是斜边上的高,如图所示,以AD为折痕将折起,

    使为直角,在图(2)中,求证:

    1)面BDC,面BDC

    2

     

    线面、面面垂直的综合问题的解题策略

    (1)重视转化

    涉及线面垂直、面面垂直的综合问题的解题关键是转化,即证面面垂直,转化为证线面垂直;证线面垂直转化为证线线垂直.

    (2)充分挖掘线面垂直关系

    解答线面垂直、面面垂直的综合问题时,通常要先证出一个关键的线面垂直关系,由此出发才能证出其他线线垂直、线面垂直关系,因此要注意线面垂直在解题过程中的枢纽作用.

     

    跟踪训练2. 如图,在四棱锥P­ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,BAD60°NPB的中点,过ADN三点的平面交PCMEAD的中点.求证:

    (1)EN平面PDC

    (2)BC平面PEB

    (3)平面PBC平面ADMN.

     

     

     

    1.下列命题中错误的是(  )

    A.如果平面α平面β,那么平面α内一定存在直线平行于平面β

    B.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β

    C.如果平面α平面γ,平面β平面γαβl,那么l平面γ

    D.如果平面α平面β,那么平面α内所有直线都垂直于平面β

    2.下列四个命题中,正确的序号有________

    αββγ,则αγ

    αββγ,则αγ

    αβγβ,则αγ

    αβγβ,则αγ.

    3.如图,ABO的直径,C是圆周上不同于A,B的任意一点,平面PAC平面ABC.

    (1)判断BC与平面PAC的位置关系,并证明.

    (2)判断平面PBC与平面PAC的位置关系.

    4.如图,在矩形ABCD中,AB2ADEAB的中点,NBC的中点,沿DEADE折起.

    若平面ADE平面BCDE,求证:ABAC

     

    1.利用面面垂直的性质定理证明线面垂直的问题时,要注意以下三点:

    (1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.

    2.面面垂直的判定和性质定理揭示了面面垂直、线面垂直及线线垂直间的内

    在联系,体现了数学中的化归转化思想,其转化关系如下:

     

    参考答案:

    知识梳理

    学习过程

    平面与平面垂直的性质定理:

    证明:如图所示,设,过O在平面内作与垂直的直线OB

    为二面角的平面角。

    因为,所以,因此 

    又因为,所以

    1.解:连接

    因为,所以

    又因为,所以,因此是直角三角形

    中,有

    进而在中,有

    2.

    证明 过AAEPCE,由平面PAC平面PBC

    且平面PAC平面PBCPC,可知AE平面PBC

    BC平面PBC,故AEBC

    PA平面ABCBC平面ABC,故PABC

    PAAEAPAAE平面PACBC平面PAC

    AC平面PAC,故BCAC

     

    跟踪训练1.

     [思路探究] (1)

    (2)要证ADPB,只需证AD平面PBG即可.

    [证明] (1)如图,在菱形ABCD中,连接BD

    由已知DAB60°

    ∴△ABD为正三角形,GAD的中点,BGAD.

    平面PAD平面ABCD

    且平面PAD平面ABCDADBG平面PAD.

    (2)如图,连接PG.

    ∵△PAD是正三角形,GAD的中点,

    PGAD,由(1)BGAD.PGBGG.

    AD平面PBG.

    PB平面PBGADPB.

    3.

    证明:(1)由已知有,因此在图(2)中,有

    又因为,所以面

    同理,面

    2)因为,所以图(1)中,有 ,从而

    因此图(2)中是等腰直角三角形,所以

    ,从而,所以 

    跟踪训练2.

     

    [思路探究] (1)证明ENDM(2)ADBC可证AD平面PEB(3)利用(2)可证PB平面ADMN.

    [证明] (1)因为ADBCBC平面PBCAD平面PBC,所以AD平面PBC.

    又因为平面ADMN平面PBCMN,所以ADMN.

    又因为BCAD,所以MNBC.

    又因为NPB的中点,所以点MPC的中点.

    所以MNBCMNBC

    又因为EAD的中点,所以MNDE,且MNDE.

    所以四边形DENM为平行四边形.

    所以ENDM,且EN平面PDCDM平面PDC.

    所以EN平面PDC.

    (2)因为四边形ABCD是边长为2的菱形,

    BAD60°,所以BEAD.

    又因为侧面PAD是正三角形,且EAD中点,

    所以PEADBEPEE,所以AD平面PBE.

    又因为ADBC,所以BC平面PEB.

    (3)(2)AD平面PBE

    PB平面PBE,所以ADPB.

    又因为PAABNPB的中点,所以ANPB.

    ANADA,所以PB平面ADMN.

    又因为PB平面PBC. 所以平面PBC平面ADMN.  

    达标检测

    1D [如果平面α平面β,那么平面α内垂直于交线的直线都垂直于平面β,其他与交线不垂直的直线均不与平面β垂直,故D项叙述是错误的.]

     

    2①② [③④不正确,如图所示,αβγβ,但αγ相交且不垂直.]

    3.:(1)BC平面PAC.

    证明:因为ABO的直径,C是圆周上不同于A,B的任意一点,所以ACB=90°,所以BCAC.

    又因为平面PAC平面ABC,平面PAC平面ABC=AC,BC平面ABC,所以BC平面PAC.

    (2)因为BC平面PBC,所以平面PBC平面PAC.

    4. 证明 (1)DE的中点M,连接AM

    在翻折前,ABCD为矩形,AB2ADEAB的中点,

    翻折后ADAE,且AMDE

    又平面ADE平面BCDEAM平面BCDE

    AMBC,又NBC的中点,MNBCAMMNM

    BC平面AMNBCAN

    NBC的中点,ABAC

    相关学案

    高中数学11.4.1 直线与平面垂直第2课时导学案: 这是一份高中数学11.4.1 直线与平面垂直第2课时导学案,共17页。

    高中人教B版 (2019)11.4.1 直线与平面垂直第2课时导学案及答案: 这是一份高中人教B版 (2019)11.4.1 直线与平面垂直第2课时导学案及答案,共12页。学案主要包含了学习重点,学习难点,对点快练,变式训练,变式练习等内容,欢迎下载使用。

    高中数学人教B版 (2019)必修 第四册11.4.2 平面与平面垂直第1课时学案设计: 这是一份高中数学人教B版 (2019)必修 第四册11.4.2 平面与平面垂直第1课时学案设计,共9页。学案主要包含了学习重点,学习难点,对点快练,变式练习,解题方法,变式练习2,变式练习1等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map