三年(2019-2021)高考数学(理)真题分项汇编之专题08平面解析几何(解答题)(原卷版)
展开(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC交y=-3于点M、N,直线AC交y=-3于点N,若|PM|+|PN|≤15,求k的取值范围.
2.【2021·全国高考真题】在平面直角坐标系中,已知点、,点的轨迹为.
(1)求的方程;
(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.
3.【2021·浙江高考真题】如图,已知F是抛物线的焦点,M是抛物线的准线与x轴的交点,且,
(1)求抛物线的方程;
(2)设过点F的直线交抛物线与A、B两点,斜率为2的直线l与直线,x轴依次交于点P,Q,R,N,且,求直线l在x轴上截距的范围.
4.【2021·全国高考真题(理)】在直角坐标系中,的圆心为,半径为1.
(1)写出的一个参数方程;
(2)过点作的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.
5.【2021·全国高考真题(理)】已知抛物线的焦点为,且与圆上点的距离的最小值为.
(1)求;
(2)若点在上,是的两条切线,是切点,求面积的最大值.
6.【2020年高考全国Ⅰ卷理数】已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.
7.【2020年高考全国Ⅱ卷理数】已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且.
(1)求C1的离心率;
(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.
8.【2020年高考全国Ⅲ卷理数】已知椭圆的离心率为,,分别为的左、右顶点.
(1)求的方程;
(2)若点在上,点在直线上,且,,求的面积.
9.【2020年高考北京】已知椭圆过点,且.
(Ⅰ)求椭圆C的方程:
(Ⅱ)过点的直线l交椭圆C于点,直线分别交直线于点.求的值.
10.【2020年高考浙江】如图,已知椭圆,抛物线,点A是椭圆与抛物线的交点,过点A的直线l交椭圆于点B,交抛物线于点M(B,M不同于A).
(Ⅰ)若,求抛物线的焦点坐标;
(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.
11.【2020年高考江苏】在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.
(1)求的周长;
(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求的最小值;
(3)设点M在椭圆E上,记与的面积分别为S1,S2,若,求点M的坐标.
12.【2020年新高考全国Ⅰ卷】已知椭圆C:的离心率为,且过点A(2,1).
(1)求C的方程:
(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.
13.【2020年新高考全国Ⅱ卷】已知椭圆C:过点M(2,3),点A为其左顶点,且AM的斜率为 ,
(1)求C的方程;
(2)点N为椭圆上任意一点,求△AMN的面积的最大值.
14.【2019年高考全国Ⅰ卷理数】已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若,求|AB|.
15.【2019年高考全国Ⅱ卷理数】已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明:是直角三角形;
(ii)求面积的最大值.
16.【2019年高考全国Ⅲ卷理数】已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.
(1)证明:直线AB过定点:
(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.
17.【2019年高考北京卷理数】已知抛物线C:x2=−2py经过点(2,−1).
(1)求抛物线C的方程及其准线方程;
(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.
18.【2019年高考天津卷理数】设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.
(1)求椭圆的方程;
(2)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.
19.【2019年高考江苏卷】如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.
已知DF1=.
(1)求椭圆C的标准方程;
(2)求点E的坐标.
20.【2019年高考浙江卷】如图,已知点为抛物线的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记的面积分别为.
(1)求p的值及抛物线的准线方程;
(2)求的最小值及此时点G的坐标.
三年(2019-2021)高考数学(理)真题分项汇编之专题12数列(原卷版): 这是一份三年(2019-2021)高考数学(理)真题分项汇编之专题12数列(原卷版),共7页。试卷主要包含了【2021·全国高考真题等内容,欢迎下载使用。
三年(2019-2021)高考数学(理)真题分项汇编之专题15概率与统计(解答题)(原卷版): 这是一份三年(2019-2021)高考数学(理)真题分项汇编之专题15概率与统计(解答题)(原卷版),共6页。试卷主要包含了【2020年高考山东】等内容,欢迎下载使用。
三年(2019-2021)高考数学(理)真题分项汇编之专题11平面向量(原卷版): 这是一份三年(2019-2021)高考数学(理)真题分项汇编之专题11平面向量(原卷版),共3页。