三年(2019-2021)高考数学(理)真题分项汇编之专题05立体几何(选择题、填空题)(原卷版)
展开
这是一份三年(2019-2021)高考数学(理)真题分项汇编之专题05立体几何(选择题、填空题)(原卷版),共11页。试卷主要包含了【2021·全国高考真题,【2021·北京高考真题】定义等内容,欢迎下载使用。
专题05 立体几何(选择题、填空题)1.【2021·浙江高考真题】某几何体的三视图如图所示,则该几何体的体积是( )A. B.3 C. D.2.【2021·北京高考真题】某四面体的三视图如图所示,该四面体的表面积为( )A. B.4 C. D.23.【2021·浙江高考真题】如图已知正方体,M,N分别是,的中点,则( )A.直线与直线垂直,直线平面B.直线与直线平行,直线平面C.直线与直线相交,直线平面D.直线与直线异面,直线平面4.【2021·全国高考真题(理)】已如A,B,C是半径为1的球O的球面上的三个点,且,则三棱锥的体积为( )A. B. C. D.5.【2021·全国高考真题(理)】在正方体中,P为的中点,则直线与所成的角为( )A. B. C. D.6.【2021·全国高考真题】已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )A. B. C. D.7.【2021·北京高考真题】定义:24小时内降水在平地上积水厚度()来判断降雨程度.其中小雨(),中雨(),大雨(),暴雨(),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级( )8.【2021·全国高考真题】在正三棱柱中,,点满足,其中,,则( )A.当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点,使得D.当时,有且仅有一个点,使得平面9.【2021·全国高考真题(理)】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).10.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A. B. C. D.11.【2020年高考全国Ⅱ卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为,在俯视图中对应的点为,则该端点在侧视图中对应的点为A. B. C. D.12.【2020年高考全国II卷理数】已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16,则O到平面ABC的距离为A. B. C.1 D.13.【2020年高考全国Ⅲ卷理数】如图为某几何体的三视图,则该几何体的表面积是A.6+4 B.4+4 C.6+2 D.4+214.【2020年高考全国Ⅰ卷理数】已知为球的球面上的三个点,⊙为的外接圆,若⊙的面积为,,则球的表面积为A. B. C. D.15.【2020年高考天津】若棱长为的正方体的顶点都在同一球面上,则该球的表面积为A. B. C. D.16.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为A. B.C. D.17.【2020年高考浙江】某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是A. B. C.3 D.618.【2020年高考浙江】已知空间中不过同一点的三条直线l,m,n.“l ,m,n共面”是“l ,m,n两两相交”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件19.【2020年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A.20° B.40°C.50° D.90°20.【2019年高考全国Ⅰ卷理数】已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为A. B.C. D.21.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面 22.【2019年高考全国Ⅲ卷理数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM,EN 是相交直线
B.BM≠EN,且直线BM,EN 是相交直线
C.BM=EN,且直线BM,EN 是异面直线D.BM≠EN,且直线BM,EN 是异面直线23.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158 B.162 C.182 D.32424.【2019年高考浙江卷】设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则A.β<γ,α<γ B.β<α,β<γ C.β<α,γ<α D.α<β,γ<β 25.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是__________.① ② ③ ④26.【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 27.【2020年高考浙江】已知圆锥的侧面积(单位:cm2)为,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是_______.28.【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半轻为0.5 cm,则此六角螺帽毛坯的体积是 ▲ cm.29.【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为________.30.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体挖去四棱锥O—EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,,3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为___________g.31.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.32.【2019年高考北京卷理数】已知l,m是平面外的两条不同直线.给出下列三个论断:①l⊥m; ②m∥; ③l⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.33.【2019年高考天津卷理数】已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.34.【2019年高考江苏卷】如图,长方体的体积是120,E为的中点,则三棱锥E−BCD的体积是 ▲ .35.【2019年高考全国Ⅱ卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)
相关试卷
这是一份三年高考(2019-2021)数学(理)试题分项汇编——专题05 立体几何(选择题、填空题)(教师版),共31页。试卷主要包含了【2021·全国高考真题,【2021·北京高考真题】定义等内容,欢迎下载使用。
这是一份三年(2019-2021)高考数学(理)真题分项汇编之专题14概率与统计(选择题、填空题)(原卷版),共5页。试卷主要包含了【2021·全国高考真题等内容,欢迎下载使用。
这是一份三年(2019-2021)高考数学(理)真题分项汇编之专题07平面解析几何(选择题、填空题)(原卷版),共8页。试卷主要包含了【2021·全国高考真题等内容,欢迎下载使用。